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This survey seeks to describe methods for measuring the entropy of graphs and to demon-
strate the wide applicability of entropy measures. Setting the scene with a review of clas-
sical measures for determining the structural information content of graphs, we discuss
graph entropy measures which play an important role in a variety of problem areas, includ-
ing biology, chemistry, and sociology. In addition, we examine relationships between
selected entropy measures, illustrating differences quantitatively with concrete examples.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

A variety of problems in, e.g., discrete mathematics, computer science, information theory, statistics, chemistry, biology
etc. deal with investigating entropies of relational structures. Thus it is not surprising to find variation in the way researchers
define the term ‘graph entropy’. For example, graph entropy has been used extensively to characterize the structure of graph-
based systems in mathematical chemistry [11]. In these applications the entropy of a graph is interpreted as its structural
information content and serves as a complexity measure. Such a measure is associated with an equivalence relation defined
on a finite graph. The partition induced by the equivalence relation allows for defining a probability distribution [11,69,77,86].
Applying Shannon’s entropy formula [79] with the probability distribution one obtains a numerical value that serves as an
index of the structural feature captured by the equivalence relation. In particular, with X representing a graph invariant
and a an equivalence relation that partitions X into k subsets of cardinality jXij, a measure IðG;aÞ may be defined as follows:
IðG;aÞ ¼ jXj logðjXjÞ �
Xk

i¼1

jXij logðjXijÞ; ð1Þ

IðG;aÞ ¼ �
Xk

i¼1

Pi logðPiÞ ¼ �
Xk

i¼1

jXij
jXj log

jXij
jXj

� �
: ð2Þ
. All rights reserved.
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Rashevsky [77], Trucco [86], Mowshowitz [66–69] were the first researchers to define and investigate the entropy of graphs.
After this seminal work, Körner [55] introduced a different definition of graph entropy closely linked to problems in infor-
mation and coding theory. The underlying problem was to determine the performance of a best possible encoding of mes-
sages emitted by an information source where the symbols belong to a finite vertex set V. Another definition of Körner’s
entropy that first appeared in [24] is based on the so-called stable set problem that is strongly related to minimum entropy
colorings of graphs [80,81].

As the foregoing discussion suggests, there are competing notions of graph entropy. In fact, there may be no ‘right’ one,
since what may be useful in one domain may not be serviceable in another. Since graph entropy in one form or another plays
an important role in a variety of problem areas, a broad survey of the concept is warranted. Two survey papers [80,81] have
already appeared, but these are narrowly focused on aspects and properties of Körner’s entropy measures. We aim to provide
a broad overview of the most well-known graph entropy measures that have been defined and applied thus far. Apart from
reviewing classical definitions [77,86,69,66–68,55], we will discuss graph entropy measures which have been applied in such
diverse fields as computer science, sociology, chemistry, and biology.

1.1. Outline of the survey

We start our survey on graph entropy by providing some mathematical preliminaries in Section 2.1. This is followed by a
discussion of classical measures for determining the structural information content of graphs in Section 2.2. Entropy mea-
sures on graphs designed to characterize chemical structures are described in Section 2.3. In contrast to measures based on
metrical properties of graphs (see Section 2.3.3) for describing graphs by their structural information content, local entropies
are defined in Section 2.3.4. Section 2.4 discusses entropy measures to analyze social network structures. By assigning prob-
ability values to each individual vertex in a graph using certain information functions, families of entropy measures can be
obtained. This approach is presented in Section 2.5. Then, Section 2.5.1 shows concrete examples and Section 2.5.2 presents
information measures based on graph decompositions. The latter approach leads to entropy measures on hierarchical graphs
making use of ‘natural’ vertex partitions. Section 2.5.3, focuses on so-called information inequalities for graphs. In this sec-
tion, we demonstrate relations between entropy measures on graphs. In order to show that different entropy measure cap-
ture structural information differently, we present some numerical results in Section 3. To identify further areas dealing with
graph entropy measures, we shed light on some examples in Section 4. Section 5 summarizes the survey and offers conclud-
ing remarks.

2. Entropy measures on graphs

2.1. Preliminaries

We begin with some basic definitions drawn from [23,46,45,82]. Note that all the graphs discussed in this paper are as-
sumed to be connected.

Definition 2.1. G ¼ ðV ; EÞ; jV j <1; E #
V
2

� �
is called a finite undirected graph. If G = (V,E), jVj <1, and E # V � V, then G is

called a finite directed graph. GUC denotes the set of finite undirected graphs.
Definition 2.2. A tree is a connected, acyclic undirected graph. A tree T = (V,E) with a distinguished vertex r 2 V is a rooted
tree. r is called the root of the tree. The level of a vertex v in a rooted tree T equals the length of the path from r to v. The
maximum path length d from the root r to any vertex in the tree is called the height of T. A leaf is a vertex incident to exactly
one edge in a tree.

We now state the definition of an undirected generalized tree [40] that extends the concept of an ordinary rooted tree. We
remark that directed generalized trees have been introduced in [33,63].

Definition 2.3. Let T = (V,E1) be an undirected finite rooted tree, and let jLj denote the cardinality of the level set
L :¼ {l0, l1, . . . , ld}. The maximum length of a path in T is denoted by d. L : V ! L is a surjective mapping and it is called a multi
level function if it assigns to each vertex an element of the level set L. Clearly, d = jLj � 1. A graph H = (V,EGT) is called a finite,
undirected generalized tree if its edge set can be represented by the union EGT :¼ E1 [ E2 [ E3, where

� E1 forms the edge set of the underlying undirected rooted tree T.
� E2 denotes the set of horizontal across-edges, i.e., an edge whose incident vertices are at the same level i.
� E3 denotes the set of edges whose incident vertices are at different levels.

Fig. 1 shows an undirected rooted tree as well as an undirected generalized tree. Note that special undirected generalized
trees (see Definition 2.3) will be used to decompose an undirected graph and to define graph entropy measures in Section
2.5.2.
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Fig. 1. Left: T represents an ordinary undirected rooted tree. Right: An undirected generalized tree H whose underlying rooted tree equals T.
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Definition 2.4. The quantity d(v) is called the degree of a vertex v 2 V where d(v) equals the number of edges e 2 E which are
incident with v.
Definition 2.5. We call a graph k-regular iff d(v) = k"v 2 V. Gk denotes the set of finite k-regular graphs.
Definition 2.6. d(u,v) denotes the distance between u 2 V and v 2 V expressed as the minimum length of a path between u, v.
Note that d(u,v) is an integer metric. We call the quantity r(v) = maxu2Vd(u,v) the eccentricity of v 2 V. q(G) = maxv2Vr(v) is
called the diameter of G.
Definition 2.7. The j-sphere of a vertex vi in G is defined by the set
Sjðv i;GÞ :¼ fv 2 V jdðv i; vÞ ¼ j; j P 1g: ð3Þ
Definition 2.8. Let X be a discrete random variable by using alphabet A, and p(xi) = Pr (X = xi) the probability mass function of
X. The mean entropy of X is then defined by
HðXÞ :¼ �
X
xi2A

pðxiÞ logðpðxiÞÞ; xi 2 A: ð4Þ
Remark 2.1. Throughout this paper, logarithms are always taken to the base two.
2.2. The first entropy measures for graphs

The concept of graph entropy introduced by Rashevsky [77] and Trucco [86] was used to measure structural complexity.
Several graph invariants such as the number of vertices, the vertex degree sequence, and extended degree sequences (i.e.,
second neighbor, third neighbor etc.) have been used in the construction of entropy-based measures. These information
measures for graphs have been defined by Rashevsky [77]
V IðGÞ :¼ jV j logðjV jÞ �
Xk

i¼1

Ni logðNiÞ; ð5Þ

V IðGÞ :¼ �
Xk

i¼1

jNij
jV j log

jNij
jV j

� �
: ð6Þ
Note that the entropy measure represented by Eq. (6) was originally called the topological information content [77] of a
graph G. According to Rashevsky [77], jNij denotes the number of topologically equivalent vertices in the ith vertex orbit
of G, where k is the number of different orbits. Vertices are considered as topologically equivalent if they belong to the same
orbit of a graph G. By applying this principle to the edge automorphism group, Trucco [86] introduced similar entropy
measures
EIðGÞ :¼ jEj logðjEjÞ �
Xk

i¼1

NE
i logðNE

i Þ; ð7Þ

EIðGÞ :¼ �
Xk

i¼1

NE
i

��� ���
jEj log

NE
i

��� ���
jEj

0@ 1A: ð8Þ
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Correspondingly, jNE
i j stands for the number of edges which belong to the i-th edge orbit [11,85] of G.

Mowshowitz [66–69] explored the properties of structural information measures relative to two different equivalence
relations defined on the vertices of a graph. One is the measure Ia(G), based on Rashevsky’s topological information content,
that computes the entropy of a graph relative to the vertex partition induced by the automorphism group. The other Ic(G) is
defined relative to a chromatic decomposition of the vertices. The automorphism-based measure captures the symmetry
structure of a graph. At one extreme there is the complete graph which has the full symmetric group and thus zero infor-
mation content; at the other one finds the graph whose group consists of the identity alone and thus has the maximum
log (jVj) information content. Note that to compute the information content of an arbitrary graph is non-trivial. In an effort
to establish properties of entropy-based measures and to simplify computation, Mowshowitz [69] examined the action of
the measures on various graph operations and products. For the automorphism-based measure the following results were
obtained.

Theorem 2.2. Let G i (1 6 i 6 n) be isomorphic to G. Then
IaðG1 [ G2 [ � � � [ GnÞ ¼ IaðGÞ ð9Þ
and
IaðG1 þ G2 þ � � � þ GnÞ ¼ IaðGÞ; ð10Þ
where [ denotes the sum and + the join operation on graphs.
These equations show that information content is unaffected by the obvious kinds of repetition. Further, it can be shown

that the information measure is semi-additive on the cartesian product and on the composition of two graphs.

Theorem 2.3. For graphs G and H
IaðG� HÞ 6 IaðGÞ þ IaðHÞ ð11Þ
and
IaðG � HÞ 6 IaðGÞ þ IaðHÞ; ð12Þ
where � and � represent the cartesian product and composition, respectively.
In the case of cartesian product, a sufficient condition for equality is that G and H are relatively prime with respect to the

product. A somewhat more complicated sufficient condition for equality holds in the case of composition. These results are
generalized for arbitrary ‘well-behaved’ product operations on graphs. In particular, the information content of such a product
graph is shown to be the sum of the information contents of the respective components minus a certain conditional entropy
defined relative to the cartesian products of the respective orbits of the component graphs. This result can be used to derive
the information content of graphs such as the hypercube that are defined in terms of product operations. The automorphism-
based entropy measure applies to directed (digraphs) as well as to undirected graphs [66]. Binary operations extend to di-
graphs in a natural way, and the information measure has properties that are analogous to those mentioned above for binary
operations on graphs. Entropy values derived from partitions of integers can be realized as the information content of some
digraph the cardinalities of whose orbits correspond to the elements of the partition. It is also possible to extend the informa-
tion measure to an infinite graph defined as the limit of a sequence of finite graphs. This extension is quite useful in demon-
strating the dependence of the information measure on a particular structural feature of a graph. As a measure of complexity,
entropy, computed on a partition of graph elements, is relative to the structural feature that induces the partition.

Computing the automorphism-based information measure for a particular graph entails determining the respective car-
dinalities of the orbits of the graph’s automorphism group. An obvious way of doing this is to construct the automorphism
group and then determine the number of elements in each orbit explicitly. The adjacency matrix of a graph can be used to
simplify the construction. This follows from the fact that a permutation of the vertices of a graph is an automorphism if and
only if the corresponding permutation matrix commutes with the graph’s adjacency matrix. The automorphisms can be com-
puted with the aid of a canonical form for the adjacency matrix together with a transforming matrix. This approach does not
yield an efficient algorithm in general, but is useful in special cases [67]. As an example, Fig. 2 shows the values of Ia and Ic for
a cycle and an identity graph. For G1, we easily obtain Ia(G1) = log (1) = 0 and Ic(G1) = log (2) = 1. Further, we calculate Ia(-
G2) = log (6) and IcðG2Þ ¼ 1

6 logð6Þ þ 1
3 logð3Þ þ 1

2 logð2Þ.

Theorem 2.4. Let G and H be n-vertex digraphs with A = A (G) and B = A(H). Suppose the elementary divisors of both A and B are
co-prime in pairs, and AB = BA. Then I a(G) = I a(H).

This result holds for undirected graphs G and H whose adjacency matrices A and B have distinct eigenvalues. Graph col-
orings (or independent sets) offer a structural feature, quite different from automorphisms, on which to base an entropy
measure. The following definition is from [68].

Definition 2.9. Let G be a graph with jVj vertices, and let
bV ¼ fVij1 6 i 6 hg; jVij ¼ niðbV Þ ð13Þ



Fig. 2. Left: The cycle graph G1. Right: An identity graph G2.
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be an arbitrary chromatic decomposition of G where h = v(G) is the chromatic number of G. Then the chromatic information
content Ic(G) of G is given by
IcðGÞ ¼ minbV �
Xh

i¼1

niðbV Þ
jV j log

niðbV Þ
jV j

 !( )
: ð14Þ
Roughly speaking, the chromatic information content of a graph is inversely related to the number of vertices in a max-
imally independent set. Note that Ic(G) does not necessarily give the minimum over all possible chromatic decompositions of
an arbitrary graph G. However, if G does not have a complete k-coloring for k P v(G) then Ic(G) is indeed the minimum. In
general, Ic(G) 6 log (v(G)) and Ic(G) 6 log (d0 + 1) where d0 is the maximum degree of any vertex in G. Additional upper bonds
are given in [68].

Also, graph operations such as cartesian product and composition are useful for the automorphism-based measure be-
cause the orbits of the combined graphs are closely related to the cartesian products of the orbits of the component graphs.
However, these products do not seem useful for studying the chromatic-based measure. Other graph operations such as the
Kronecker product appear to be more useful [68]. Further, the radical difference between the measures Ia(G) and Ic(G) can be
illustrated with respect to trees. Since the chromatic number of a tree is 2, Ic(G) 6 1. However, for every integer n P 7 there
exists an identity tree on n vertices, which means Ia(G) = log (n). Thus, the numerical difference between the two measures is
unbounded. Clearly, the complexity of a graph as measured by an entropy function is relative to the structural feature that
gives rise to the partition used in the entropy computation.

2.3. Entropy measures in biology and chemistry

Shannon’s seminal work [79] in the late nineteen-forties marks the starting point of modern information theory. Follow-
ing early applications in linguistics and electrical engineering, information theory was applied extensively in biology and
chemistry, see, e.g., [65,73,77]. Here, the main novelty was the idea of considering a structure as an outcome of an arbitrary
communication [13]. With the aid of this insight, Shannon’s entropy formulas [79] were used to determine the structural
information content of a network [66–69,77,86]. As a result, this method has been used for exploring living systems, e.g.,
biological and chemical systems by means of graphs. These applications are closely related to the work of Rashevsky [77]
and Trucco [86] discussed in Section 2.2. In what follows, we review in chronological order graph entropy measures that
have been used for studying biological and chemical networks.

2.3.1. Classical measures for detecting molecular complexity
As noted in Section 1, complexity measures defined on graphs [69,75,76] can be obtained by applying Shannon’s entropy

formula based on partitions induced by structural characteristics a graph. Hence, each measure outlined in Section 2.2 can be
used for measuring molecular complexity. In particular, Bertz [8] developed an extension of Rashevsky’s measure designed
to analyze molecular structures. A known weak point of a measure like the one in Eq. 5 is that it does not properly reflect the
number of the invariants used because one obtains I(G) = 0 when all invariants are equal [8]. This holds independently of the
size of the graph. To overcome this problem, Bertz chose as graph invariant the number of two-edge subgraphs and added
the term jVjlog (jVj) resulting in
V CðGÞ ¼ 2jV j logðjV jÞ �
Xk

i¼1

Ni logðNiÞ; ð15Þ
or more generally
XCðGÞ ¼ 2jXj logðjXjÞ �
Xk

i¼1

Ni logðNiÞ: ð16Þ
X represents any graph invariant [8]. Other measures of the molecular complexity of graphs can be found in [13,64,75,76].



62 M. Dehmer, A. Mowshowitz / Information Sciences 181 (2011) 57–78
2.3.2. Entropy measures based on graph decompositions
In 1971, Hosoya [48] introduced the topological index Z to characterize molecular branching [15], namely,
Z ¼
XbjV j=2c

i¼0

PðG; iÞ; ð17Þ
where P(G, i) denotes the number of selections of i mutually non-adjacent edges in G. In the case of acyclic graphs, Z was
defined by the sum of the absolute values of the polynomial coefficients p(G,k) of the characteristic polynomial
PðG; xÞ ¼
Xs

k¼0

ð�1ÞkpðG; kÞxjV j�2k: ð18Þ
Here, s represents the largest number of mutually non-incident edges in the acyclic graph, see also [87]. Usually, the char-
acteristic polynomial can be calculated from its adjacency matrix. Now, one can argue that applying the Hosoya-Index to a
graph G induces a decomposition of a graph [11]. By using the definition of Z, Bonchev and Trinajstić [15] defined informa-
tion contents for polynomial coefficients of the characteristic polynomial of a graph G by
IpcðGÞ ¼ Z logðZÞ �
X½jV j=2�

k¼0

pðG; kÞ logðpðG; kÞÞ; ð19Þ

IpcðGÞ ¼ �
X½jV j=2�

k¼0

pðG; kÞ
Z

log
pðG; kÞ

Z

� �
: ð20Þ
In [15], numerical results are given that compare Z, IpcðGÞ; IpcðGÞ, and other entropy measures on graphs. Additional entropy
measures based on graph decompositions are discussed in Section 2.5.

2.3.3. Entropy measures based on metrical properties of graphs
The measures discussed in the preceding sections are based on classical graph invariants, e.g., number of vertices, edges,

connections, etc. As stated in [13], a limitation of the resulting classical measures is that structurally non-equivalent graphs
may have the same information content. For example, two non-isomorphic graphs can have the same information content
using the measure defined in Eq. (2). In mathematical chemistry, this problem deals with evaluating the degree of the so-
called degeneracy [15,85] of a topological index. An index, i.e., a graph complexity measure is called degenerate if the index
possesses the same value for more than one structure. In order to overcome this problem, Bonchev and Trinajstić [15] devel-
oped a variety of so-called magnitude-based graph entropy measures which are based on weighted probability distributions
taking several structural graph features into account, e.g., distances and vertex degrees etc.

In this section, we discuss only the most well-known entropy measures based on graph distances, starting with the work
of Bonchev and Trinajstić [15]. The basis of the following information measure is the distance matrix
D ¼ ðdðv i;v jÞÞij; 1 6 i 6 jV j; 1 6 j 6 jV j: ð21Þ
By defining the probability values p0 ¼ 1
jV j and pi ¼ 2ki

jV j2
, Bonchev and Trinajstić obtained [15]
IDðGÞ ¼ jV j2 logðjV j2Þ � jV j logðjV jÞ �
XqðGÞ
i¼1

2ki logð2kiÞ; ð22Þ

IDðGÞ ¼ �
1
jV j log

1
jV j

� �
�
XqðGÞ
i¼1

2ki

jV j2
log

2ki

jV j2

 !
: ð23Þ
Here, a value i in the distance matrix D appears 2ki times. As a result, it turns out that these measures are more sensitive than
other classical topological indices used in mathematical chemistry [15]. Yet another pair of entropy measures for graphs has
been defined [15] as
IW
t ðGÞ ¼WðGÞ logðWðGÞÞ �

XqðGÞ
i¼1

iki logðiÞ; ð24Þ

IW
D ðGÞ ¼ �

XqðGÞ
i¼1

iki

WðGÞ log
i

WðGÞ

� �
; ð25Þ
where W(G) is called the Wiener-Index [92],
WðGÞ ¼
XqðGÞ
i¼1

iki: ð26Þ
As noted earlier, the strength of these information measures lies in their high discrimination power [15,54] evidenced by
empirical tests using appropriate data sets. Another distance-based entropy measure was developed by Balaban and Balaban
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[5]. The definitions shown below are designed to compensate for the fact that information measures defined for graphs may
be highly degenerate. Balaban and Balaban [5] first defined the mean information on the magnitude of distances for each
vertex vi as
uðv iÞ ¼ �
Xrðv iÞ

j¼1

jgj

dðv iÞ
log

j
dðv iÞ

� �
: ð27Þ
Moreover,
dðv iÞ ¼
XjV j
j¼1

dðv i; v jÞ ¼
Xrðv iÞ

j¼1

jgj; ð28Þ
where gj indicates the number of vertices whose distance from vi is j. Additionally, the local information on the magnitude of
distances is defined as
wðv iÞ ¼ dðv iÞ logðdðv iÞÞ � uðv iÞ: ð29Þ
Finally, applying Randić’s formula [74] one obtains
U1ðGÞ ¼
jEj

lþ 1

X
ðv i ;v jÞ2E

½uðv iÞuðv jÞ��
1
2; ð30Þ

U2ðGÞ ¼
jEj

lþ 1

X
ðv i ;v jÞ2E

½wðv iÞwðv jÞ��
1
2; ð31Þ
where l denotes the cyclomatic number defined by l :¼ jEj + 1 � jVj, see [5].

2.3.4. Local entropy measures based on metrical properties
The entropy measures presented thus far have been designed to characterize a graph G by determining its global infor-

mation content. However, it is also useful to define information measures on local features or substructures of a graph. For
example, one can define an entropy measure for each vertex of a graph. Such a measure can be interpreted as a kind of vertex
complexity [78] that here depends on the distances to the remaining vertices in the graph. These kind of measures have been
developed by, e.g., Konstantinova and Paleev [53], Raychaudhury et al. [78] and Balaban and Balaban [5], see Section 2.3.3.
For example, the following entropy measure [53]
IDðv iÞ :¼ �
XjV j
j¼1

dðv i; v jÞ
dðv iÞ

log
dðv i;v jÞ

dðv iÞ

� �
ð32Þ
represents the information distance of the vertex vi 2 V. Correspondingly, the entropy of G is defined by summing up the
information distances for each vertex,
IH

D ðGÞ :¼
XjV j
i¼1

IDðv iÞ: ð33Þ
By applying the same principle to the matrix
S ¼ ðjSjðv i;GÞjÞij; i ¼ 1; . . . ; jV j; j ¼ 1; . . . ;qðGÞ ð34Þ
of j-sphere cardinalities of a graph G, Konstantinova and Paleev [53] also obtained
ISðv iÞ ¼ �
Xrðv iÞ

j¼0

jSjðv i;GÞj
jV j log

jSjðv i;GÞj
jV j

� �
; ð35Þ

IH

S ðGÞ ¼
XjV j
i¼1

ISðv iÞ: ð36Þ
These measures discriminate between graphs by means of their additive entropies. Recent work by Dehmer and Emmert-
Streib [32] on local entropy for graphs has led to the construction of parametric information measures,
Igl ðv iÞ :¼ �
XjV j
j¼1

gj
lðv iÞPjV j

j¼1gj
lðv iÞ

log
gj

lðv iÞPjV j
j¼1gj

lðv iÞ

 !
; ð37Þ



64 M. Dehmer, A. Mowshowitz / Information Sciences 181 (2011) 57–78
where
gj
1ðv iÞ :¼ dðv i;v jÞ; 1 6 i 6 jV j; ð38Þ

gj
2ðv iÞ :¼ cjdðv i; v jÞ; 1 6 i 6 jV j; ci > 0: ð39Þ
Igl ðv iÞ is a local vertex entropy. By setting cj = 1 in gj
2ðv iÞ, we get Eq. (32) as special case. Finally, the entropy of G can also be

defined by
Igl ðGÞ :¼
PjV j

i¼1Igl ðv iÞ
jV j : ð40Þ
These measures represent families of local entropies. In particular, we define special information measures by choosing con-
crete coefficients [35]:
I1
locðGÞ :¼

PjV j
i¼1Ig1

ðv iÞ
jV j ; ð41Þ

I2
locðGÞ :¼

PjV j
i¼1Ig2

ðv iÞ
jV j ; ð42Þ
where the coefficients are linearly decreasing, e.g.,
c1 :¼ qðGÞ; c2 :¼ qðGÞ � 1; . . . ; cqðGÞ :¼ 1: ð43Þ
Finally, I3
loc is also defined by using Eq. (42) where the coefficients are exponentially decreasing, e.g.,
c1 :¼ qðGÞ; c2 :¼ qðGÞe�1; . . . ; cqðGÞ :¼ qðGÞe�qðGÞþ1: ð44Þ
Other local entropies can be found in [85].

2.4. Entropy measures in sociology and psychology

Structural approaches play an important role in the analysis of social networks and in mathematical psychology [60,91].
One area of continuing interest in the theory of social networks centers on measuring the complexity of social networks [19].
However, most of the contributions are related to non-information-theoretic measures, e.g., see [19,22,44,58]. In contrast,
relatively little work has been done on measuring complexity by using entropy measures [19]. In this section, we review
the few existing contributions that apply entropy measures to social network analysis. As noted above, an important appli-
cation area focuses on measuring structural complexity of such networks. For investigating this problem, Everett [43] ap-
plied the entropy measure developed by Mowshowitz [69] for detecting so-called role complexity. This notion of role is
used to analyze relations between individuals in social networks. Based on numerical results obtained from sample graphs,
it turned out that the non-information-theoretic complexity measure
RCðGÞ :¼ 1� jAutðGÞj
jV j! ; ð45Þ
could reflect role complexity more meaningfully than an entropy measure. One can see that Eq. (45) is related to the number
of positions spanned by the vertex orbits [43]. Another definition of an entropy-based measure designed to capture behav-
ioral diversity among robots was developed by Balch [6]. In order to quantify robot team diversity [6], the concept of ‘hier-
archical social entropy’ was introduced based on entropies of simple partitions induced by a hierarchical clustering among
robots. The connection with topological graph entropy can be explained as follows. By performing agglomerative clustering
[49], a tree-like structure called a ‘dendogram’ is created. Hence, for each resulting partition Pi of the dendogram a proba-
bility distribution p1, . . . , pk is defined, where
pl ¼
jcljPk
j¼1jcjj

: ð46Þ
jclj denotes the cardinality of the collection of robots in the lth subset on Pi. Hence, the entropy of Pi can be expressed by
IðPjÞ ¼ �
Xk

j¼1

pj logðpjÞ: ð47Þ
This entropy measure characterizes a partition of a tree-like graph structurally representing a dendogram obtained from a
clustering process [6]. Fig. 3 provides an example of such a dendogram with its partitions. To conclude this section, we briefly
mention an information-theoretic approach developed by Tutzauer [88] for detecting the centrality of vertices by means of
transfer and flows along paths. This method was applied to analyze vertex centrality in networks representing gangs. Based
on flow probabilities pv i ;v j

starting at vi and ending at vi, the path-transfer centrality of vi is [88]



1 2 3 4 5 6 7 8

Fig. 3. A tree-like graph resulting from agglomerative clustering.
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ICðv iÞ ¼ �
XjV j
j¼1

pv i ;v j
logðpv i ;v j

Þ: ð48Þ
To explore phenomena in special social networks as well as traffic networks, entropy measures based on link distributions
have also been introduced [50,59,94].

2.5. More recent entropy measures for graphs

The entropy measures presented in Section 2.3 are based on grouping the elements (partitions) of a given graph invariant
X using an equivalence criterion. Examples for concrete invariants are vertices, edges, degrees, and distances in a graph, see
[11]. In this section, we outline a different approach for deriving graph entropy measures recently developed in [29,31]. The
main idea can be summarized as follows. Instead of inducing partitions and determining their probabilities, we assign a
probability value to each individual vertex in a graph. One way to do this is by means of certain information functions which
capture structural features of a graph. This procedure avoids the problem of determining partitionings associated with an
equivalence relation. Several parametric information functions based on metrical properties of graphs have been defined
in [28]. A notable feature of this approach is that the resulting graph entropy measures can be used for solving machine
learning problems because the existing parameters can be learned by using appropriate data sets. In what follows, we pres-
ent salient definitions and results [28,29].

2.5.1. Parametric graph entropy measures

Definition 2.10. Let G be an arbitrary finite graph and let S be a given set, e.g., a set of vertices or paths etc. Functions f of the
form f : S! Rþ play a role in defining information measures on graphs, so we call them abstract information functions of G.
Definition 2.11. Let f be an abstract information function of G. Then
pf ðv iÞ :¼ f ðv iÞPjV j
j¼1f ðv jÞ

: ð49Þ
Obviously,
pf ðv1Þ þ pf ðv2Þ þ � � � þ pf ðv jV jÞ ¼ 1: ð50Þ
Hence, (pf(v1), . . . ,pf(vjVj) forms a probability distribution.

Definition 2.12. Let G be a finite arbitrary graph and let f be an abstract information function.
If ðGÞ :¼ �
XjV j
i¼1

f ðv iÞPjV j
j¼1f ðv jÞ

log
f ðv iÞPjV j
j¼1f ðv jÞ

 !
; ð51Þ

Ikf ðGÞ :¼ k logðjV jÞ þ
XjV j
i¼1

f ðv iÞPjV j
j¼1f ðv jÞ

log
f ðv iÞPjV j
j¼1f ðv jÞ

 ! !
; ð52Þ
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are families of information measures representing the structural information content of G. k > 0 is a scaling constant. If is the
entropy of G and Ikf its information distance between maximum entropy and If.

The meaning of If and Ikf has been investigated by calculating the information content of real and synthetic chemical struc-
tures, see [35]. Also, the information measures were calculated using specific graph classes to study extremal values and,
hence, to detect the kind of structural information captured by the measures. Clearly Eqs. (51), (52) represent families of
information measures to index the information content of graphs. Special entropy measures for graphs can be obtained
by specifying particular information functions. For instance, such functions (first defined in [29]) are based on j-sphere car-
dinalities and can be expressed as exponential and linear functions.

Definition 2.13. Let G ¼ ðV ; EÞ 2 GUC . For a vertex vi 2 V, we define f Vj , j = 1,2 as
f V1 ðv iÞ :¼ ac1 jS1ðv i ;GÞjþc2 jS2ðv i ;GÞjþ���þcqðGÞ jSqðGÞðv i ;GÞj; ck > 0; 1 6 k 6 qðGÞ; a > 0; ð53Þ

f V2 ðv iÞ :¼ c1jS1ðv i;GÞj þ c2jS2ðv i;GÞj þ � � � þ cqðGÞjSqðGÞðv i;GÞj; ck > 0; 1 6 k 6 qðGÞ: ð54Þ

Applying Definition 2.12, we obtain the corresponding entropies.
Definition 2.14. Let G ¼ ðV ; EÞ 2 GUC .
I
f Vj ðGÞ :¼ �

XjV j
i¼1

pf
Vj ðv iÞ log pf

Vj ðv iÞ
� �

; ð55Þ

Ik
f

Vj ðGÞ :¼ k logðjV jÞ þ
XjV j
i¼1

pf
Vj ðv iÞ log pf

Vj ðv iÞ
� � !

: ð56Þ
The fact that the underlying information functions as well as the resulting entropies are parametric gives us the possibil-
ity of weighting structural differences or characteristics of a graph. In particular, the ck must be chosen such that not all val-
ues are equal, e.g.,
c1 > c2 > � � � > cq or c1 < c2 < � � � < cq: ð57Þ
Numerical examples of the computation of If V1 for chemical graphs are presented in [31]. Note that If V1 is shown to reflect the
structural complexity of graphs in a chemically meaningfully way [31]. More complex information functions depend on the
‘local information graph’ of G ¼ ðV ; EÞ 2 GUC for a vertex vi. This concept [28] is based mainly on the j-sphere and the obser-
vation that in many real world networks, information is distributed via shortest paths from a given vertex.

Definition 2.15. Let G ¼ ðV ; EÞ 2 GUC and v 2 V. Suppose further that Sj(v,G) = {u1,u2, . . . ,uk}. For each ut 2 Sj(v,G), 1 6 t 6 k, let
Pj

tðvÞ denote the path of length j from v to ut. Pj
tðvÞ = (v,w1,w2, . . . ,wj) where wj = ut. The set of edges Ej

t in the path is given by
Ej
t ¼ ffv;w1g; fw1;w2g; . . . ; fwj�1;wjgg ð58Þ
and the set of vertices Vj
t in the path is given by Vj

t ¼ fv;w1;w2; . . . ;wjg. Let
Vj
LG

:¼ Vj
1 [ Vj

2 � � � [ Vj
k ð59Þ
and
Ej
LG

:¼ Ej
1 [ Ej

2 [ � � � [ Ej
k: ð60Þ
The local information graph LG(v, j) of G regarding v is defined by
LGðv ; jÞ ¼ Vj
LG
; Ej

LG

� �
: ð61Þ
An example should help to clarify the construction of the graph entropy. Fig. 4 shows the j-spheres of a graph G as con-
centric circles of vertices. Fig. 5 illustrates local information graphs LG(vi,1), LG(vi,2), and LG(vi,3). Note that the local infor-
mation graph for vi 2 V can not always be uniquely defined because there may exist more than one path from vi to some
vertex in the corresponding j-sphere [28]. In such cases, additional constraints are required. Finally, local property measures,
e.g., vertex centrality measures [18], allow for using the local information graph to define more complex information func-
tions on graphs and, hence, to obtain novel families of graph entropy measures.
Definition 2.16. Let G 2 GUC . For each vertex vi 2 V, let LG(vi, j) be the local information graph of G. We define f Cj ðv iÞ, j = 1, 2 as
f C1 ðv iÞ :¼ ac1bLG ðvi ;1Þðv iÞþc2bLG ðv i ;2Þðv iÞþ���þcqðGÞb
LG ðvi ;qðGÞÞðv iÞ; ck > 0; 1 6 k 6 qðGÞ; a > 0; ð62Þ

f C2 ðv iÞ :¼ c1b
LGðv i ;1Þðv iÞ þ c2b

LGðv i ;2Þðv iÞ þ � � � þ cqðGÞb
LGðv i ;qðGÞÞðv iÞ; ck > 0; 1 6 k 6 qðGÞ: ð63Þ



Fig. 5. Local information graphs of G for vi where j = 1, 2, 3.

Fig. 4. j-spheres of vi for j = 1, 2, 3.
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b represents an arbitrary vertex centrality measure. ck are real positive coefficients. The value resulting in application of b to
the vertex vi regarding LG(vi, j) is denoted by bLGðv i ;jÞðv iÞ.
Definition 2.17. Let G ¼ ðV ; EÞ 2 GUC .
I
f Cj ðGÞ :¼ �

XjV j
i¼1

pf
Cj ðv iÞ logðpf

Cj ðv iÞÞ; ð64Þ

Ik
f Cj ðGÞ :¼ k logðjV jÞ þ

XjV j
i¼1

pf
Cj ðv iÞ logðpf

Vj ðv iÞÞ
 !

: ð65Þ
Remark 2.5. Note that the definition of information functions and the resulting graph entropy measures can be extended to
finite directed graphs.
2.5.2. Entropy measures based on graph decompositions
Another type of entropy measure is based on a decomposition of a graph into special subgraphs, see [28]. One such

decomposition can be obtained by deriving tree-like structures of given height. Instead of determining the entropy of a graph
G, we calculate the entropies of derived hierarchical structures H1, . . . , Hk [28]. The key steps of the procedure are as follows:

� Let G 2 GUC be a finite undirected graph.
� Chose a vertex vi as starting point. Then, derive a generalized tree Hi of height d (see Algorithm 2.1).
� Performing this step for all vertices of G, we obtain the tree set
SH
G :¼ fH1;H2; . . . ;HjV jg:
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� Now, the entropy of each Hi can be calculated by using, e.g., Eqs. (66) and (67). At this point, we make use of use of ‘nat-
ural’ vertex partitions (on each level i).
� Finally, the entropy of G can be computed by, e.g., Eqs. (68) and (69).

The idea of determining the topological entropy of hierarchical structures has been elaborated in [39]. In particular, these
authors describe a method for computing the entropy of so-called undirected universal graphs. Such graphs are related to
generalized trees (see Definition 2.3). An advantage of this measure is that vertex partitions necessary for calculating the
entropy in hierarchical graphs are obtained in a natural way. The collection of the respective vertex sets on the different level
of a hierarchical graph forms a partition. Since the computation of entropy measures based on vertex partitions may be inef-
ficient, the overall time complexity can be reduced by using the previously mentioned decomposition method. In the follow-
ing, we present the definitions of entropy measures for undirected generalized trees. These measures, originally given in
[28], are similar to those defined in [39].

Definition 2.18. Let H be a generalized tree of height d, and suppose jVij denotes the number of vertices on the ith level. A
probability distribution associated with H is determined as follows. Let pV

i :¼ jVi j
jV j�1. Then, the vertex entropy of a generalized

tree H is defined by
IV ðHÞ :¼ �
Xd

i¼1

pV
i log pV

i

� �
: ð66Þ
Definition 2.19. Let H be a generalized tree of height, and suppose d. jEij denotes the number of edges on the ith level. A
probability distribution can be associated with H as follows. Let pE

i :¼ jEi j
2jEj�dðrÞ. Then, the edge entropy of a generalized tree

H is defined by
IEðHÞ :¼ �
Xd

i¼1

pE
i log pE

i

� �
: ð67Þ
These definitions can be applied directly to calculate the entropies of given generalized trees. However, to apply these mea-
sures for determining the entropy of a non-hierarchical undirected graph, an algorithm (such as given below) is needed to
decompose such a graph into a set of undirected generalized trees [42].
Algorithm 2.1. A graph G 2 GUC with jVj vertices can be locally decomposed into a set of generalized trees as follows: Assign
labels from 1 to jVj to the vertices. We call LS = {1, . . . , jVj} the label set. Choose a desired height d of the trees, and select an
arbitrary label from LS, e.g. i. The vertex with this label is the root vertex of a tree. Now, perform the following steps:

1. Calculate the shortest distance from vertex i to all other vertices in the graph G, e.g. by the algorithm of Dijkstra [36].
2. The vertices at distance k are the vertices on the kth level of the resulting generalized trees. Select all vertices (together

with incident edges) in the graph up to distance d. Paths of length > d are deleted.
3. Delete label i from the label set LS.
4. Repeat this procedure if LS is not empty by choosing an arbitrary label from LS, otherwise terminate.

Fig. 7 shows the outcome of applying Algorithm 2.1 to the graph G of Fig. 6. We see that decomposing G by means of Algo-
rithm 2.1 results in a set of special generalized trees. In general, the cardinality of the generalized tree set obtained equals the
number of vertices of the graph being decomposed. From Definition 2.18, we see that this measure attains its maximum if a
generalized tree H possesses the same number of vertices on each level i, 1 6 i 6 d. The same follows for the edge entropy
defined by Definition 2.19. Note that vertex numbering labels have been omitted (see Figs. 6 and 7) since the entropy mea-
sures defined above are invariant under permutations of the vertices on a given level i. Finally, by using the proposed method
for decomposing undirected graphs into sets of special generalized trees, we define the structural information content of
undirected graphs as follows [28].

Definition 2.20. Let G 2 GUC and SH
G :¼ fH1;H2; . . . ;HjV jg be the associated set of generalized trees. We define the structural

information content of G by
IV ðGÞ :¼
XjV j
i¼1

IV ðHiÞ ð68Þ
and
IEðGÞ :¼
XjV j
i¼1

IEðHiÞ: ð69Þ
Parameterized entropy measures based on the generalized tree decomposition discussed here have also been defined in
[28].



Fig. 6. An undirected graph G.

Fig. 7. Decomposing the graph G, see Fig. 6. The decomposed graphs represent special undirected generalized trees.
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2.5.3. Information inequalities for graphs
In this section, we sketch some results to derive so-called information inequalities for graphs [30,34]. Generally, informa-

tion inequalities describe relations between information measures for graphs. A major objective in studying information
inequalities is to obtain bounds on the entropies of special classes of graphs. Also, specific information inequalities can be
obtained by using different information functions, see [30] In the following, we discuss only so-called implicit information
inequalities which can be considered as a special type of an information inequality. We call such an inequality implicit be-
cause the entropy of a graph will be estimated by a quantity that contains another graph entropy expression. In the follow-
ing, we state some implicit information inequalities which have been proven in [34]. We note that the technique shown in
[34] aims to develop a general method for proving inequalities between graph entropy measures. For instance, a special
application of this approach is to characterize graph classes by using such information inequalities, see, e.g., [30].

Theorem 2.6. Let f and f w be information functions. Let G be a class of graphs. If
pf ðvÞ < w � pf H ðvÞ; 8G 2 G; ð70Þ
then
If ðGÞ þ w
XjV j
i¼1

pf H ðv iÞ � log w � pf H ðv iÞ þ 1
� �

þ
XjV j
i¼1

log w � pf H ðv iÞ þ 1
� �

> 0; 8G 2 G: ð71Þ
w is a constant expression.
Theorem 2.7. Let f and f w be information functions. Let G be a class of graphs. If
pf ðvÞ < w � pf H ðvÞ; 8G 2 G ð72Þ
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and
w � pf H ðvÞ > 1
2c � 1

> 0; c > 0; ð73Þ
then
If ðGÞ > w � If H ðGÞ � w � logðwÞ � c � w�
XjV j
i¼1

w � pf H ðv iÞ þ 1
� �

: ð74Þ
Theorem 2.8. Let f and f w be information functions. Let G be a class of graphs. If
pf ðvÞ < w � pf H ðvÞ; 8G 2 G; ð75Þ
then
If ðGÞ > w � If H ðGÞ � w � logðwÞ � w �
XjV j
i¼1

pf H ðv iÞ log 1þ 1
w � pf H ðv iÞ

� �
�
XjV j
i¼1

log pf H ðv iÞ þ 1
� �

: ð76Þ
We state the following assertions without proof since the underlying procedure is similar to the one just presented. These
results also describe implicit information inequalities when using a different relation for the vertex probabilities.

Theorem 2.9. Let f and f w be information functions. Let G be a class of graphs. If
pf ðvÞ > w � pf H ðvÞ; 8G 2 G; ð77Þ
then
If H ðGÞ þ 1
w

XjV j
i¼1

pf ðv iÞ � log pf ðv iÞ þ 1
� �

þ 1
w

XjV j
i¼1

log pf ðv iÞ þ 1
� �

� logðwÞ > 0; 8G 2 G: ð78Þ
Theorem 2.10. Let f and f w be information functions. Let G be a class of graphs. If
pf ðvÞ > w � pf H ðvÞ; 8G 2 G ð79Þ
and
pf ðvÞ > 1
2c � 1

> 0; c > 0; ð80Þ
then
If H ðGÞ > If ðGÞ
w
� c

w
� 1

w

XjV j
i¼1

pf ðv iÞ þ 1
� �

þ logðwÞ: ð81Þ
Theorem 2.11. Let f and f w be information functions. Let G be a class of graphs. If
pf ðvÞ > w � pf H ðvÞ; 8G 2 G; ð82Þ
then
If H ðGÞ > If ðGÞ
w
� 1

w

XjV j
i¼1

pf ðv iÞ log 1þ 1
pf ðv iÞ

� �
� 1

w

XjV j
i¼1

logðpf ðv iÞÞ þ logðwÞ: ð83Þ
The next theorem demonstrates that such information inequalities can be derived by assuming characteristic properties
of the functions involved [34]. The following statement is a consequence of the concave property of logarithmic function, see
[38].

Theorem 2.12. Let f and f w be information functions. Then
If ðGÞP �
XjV j
i¼1

pðv iÞ logðpf H ðv iÞÞ �
1

lnð2Þ
XjV j
i¼1

ðpf ðv iÞÞ2 � pf H ðv iÞ � pf ðv iÞ
pf H ðv iÞ

: ð84Þ
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Theorem 2.13. Let f and f w be information functions. Then
If H ðGÞ 6 �
XjV j
i¼1

pf H ðv iÞ logðpðv iÞÞ þ
1

lnð2Þ
XjV j
i¼1

pf ðv iÞ � pf H ðv iÞ � ðpf H ðv iÞÞ2

pf H ðv iÞ
: ð85Þ
3. Evaluation and interpretation of selected entropy measures

In this section, we evaluate some selected entropy measures and interpret the results. The most important question we
want to tackle here is which kind of structural information the entropy measures do detect. Before starting, we emphasize
that graph complexity can not be uniquely defined because there exist a lot of different structural features which contribute
to the complexity of a graph. Similarly, to detect molecular complexity by taking the topological complexity of the under-
lying molecule into account is a challenging undertaking, see, e.g., [9,71]. Following Nikolić and Trinajstić [71], the topolog-
ical complexity of a molecular graph is characterized by its number of vertices and edges, branching, cyclicity etc. For
instance, concrete topological measures for capturing topological complexity can be found in [8,15,92].

Consider the following scatter plots (Figs. 8 and 9) describing correlations between the graph entropy measures. For cal-
culating the graph entropies, we use a set of 2265 unlabeled graphs (MS 2265) selected from a mass spectral database. For
the graphs in this set, we obtain
4 6 jV j 6 19; 2 6 qðGÞ 6 15: ð86Þ
Further details of this set of graphs can be found in [35]. The first two scatter plots (see Figs. 8 and 9) show correlations be-
tween Ia and Ik

f
V2
lin

; IW
D (instead of the symbol IW

D , we here use the simplified notation IW
D ). First of all, we see that these measures

are highly uncorrelated, which means that they capture structural information differently. Also, it is evident that Ia is highly
degenerate as indicated by the vertical strips in the scatter plots. This is clear from the definition of Ia: In order to calculate
this graph entropy measure, we need to determine the vertex orbits. This corresponds to the problem of partitioning a graph
into sets that contain only topologically equivalent vertices. Note that graphs of significantly different structure may have
the same vertex partition. We turn now to some properties of Ia and Ik

f
Vj . It easily follows that Ia = 0 for vertex transitive

graphs. An example of such a graph is C7 (cycle with 7 vertices) as shown in Fig. 10. Note that C7 has a rich symmetry struc-
ture inasmuch as its automorphisms form the dihedral group D7. It is also the case that for graphs G 2 Gk, Ik

f Vj ; j ¼ 1;2 is zero,
independent of the choice of the parameters ck. By applying f Vj , the resulting graph entropy I

f Vj (see Eq. (55)) is log (jVj) (the
maximum possible value) and, hence by definition (see Eq. (56)), Ik

f Vj ðGÞ ¼ 0, G 2 Gk. Interestingly, Fig. 11 represents the
λ

Fig. 8. Ia versus Ik
f

V2
lin

.



Fig. 9. Ia versus IW
D .

Fig. 10. A vertex transitive and 2-regular graph.
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graph which maximizes Ia because all vertex partitions are singleton sets. Based on the characteristics of the vertex partition,
this graph is highly asymmetrical.

The information measure Ik
f

V2
lin

has the maximum value for the graph shown in Fig. 12. The detailed computation of Ik
f

V2
lin

for

this graph reveals that its vertices are topologically very different with respect to neighborhood properties defined by the j-
sphere cardinalities used to compute f V2 (Eq. (54)) and, finally, Ikf V2 . Hence, the higher the value of Ikf V2 , the more topologically
different are the vertices in the graph and the fewer the symmetries [35]. The graphs with minimum and maximum entropy
with respect to IW

D are shown in Figs. 13 and 14, respectively. The graph in Fig. 13 is acyclic, whereas the one in Fig. 14 has
several cycles. As observed for I

f Vj (see Eq. (55)), a high value of IW
D is associated with a highly symmetrical graph whereas in

this case, the molecular complexity can be interpreted relative to cycle structure. This is in accordance with Bonchev’s obser-
vation [12] that molecular complexity increases with the number of rings, multiple bonds, branches, as well as with molec-
ular size.

Finally, consider the relationships shown in Figs. 15 and 16. When starting with Ik
f

V2
lin

versus IW
D , we see that they are not

correlated at all. However, I1
loc versus IW

D reveals the existence of highly correlated clusters. Thus, the measures capture



Fig. 11. Graph that has maximum entropy for Ia.

Fig. 12. Graph which maximizes Ik
f

V2
lin

.

Fig. 13. Graph which minimizes IW
D .
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structural information in a similar way. It is important to emphasize that the procedures used to construct these two mea-
sures differ significantly. IW

D (see Eq. (23)) is a so-called magnitude-based measure constructed by assigning weighted prob-
abilities derived from distances in the graph; by contrast, the graph entropy I1

loc is defined as the mean of local vertex
entropies (see Eqs. (32) and (33)).



Fig. 14. Graph which maximizes IW
D .

λ

Fig. 15. Ik
f

V2
lin

versus IW
D .
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4. Network information measures: further applications

In Section 2, we examined the use of network information measures in biology, chemistry, and social network analysis.
Here we look at some important applications of such measures in other domains.

Networks have been used to model characteristics of living organisms, evolutionary processes and general properties of
complex systems, see, e.g., [17,37]. In particular, networks representing natural systems have often been investigated from
the perspective of statistical physics. These investigations have given rise to insights into scale free networks, and to the
development of new methods for analyzing random networks [7,17,37,70]. More generally, models for determining the com-
plexity of networks have turned out to have wide applicability [25,52]. For example, Thurner [84] has studied topological
phase transitions and network entropy in the context of statistical mechanics. To develop an information-theoretic analysis
of networks, Anand and Bianconi [3] defined Shannon entropies for network ensembles and also discussed physically-based
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network entropies such as Gibbs entropy or von Neumann entropy [72]. Moreover, information-theoretic complexity mea-
sures for directed graphs such as the ‘Medium Articulation’ have been developed [93]. Claussen [21] has defined an entropy
measure called ‘Offdiagonal complexity’. For purposes of determining the entropy of a network, Claussen [21] used the so-
called offdiagonal elements of the vertex-vertex link correlation matrix. Using the number of spanning trees of a network,
Kim and Wilhelm [52] explored an entropy measure based on calculating a quantity for each edge taking account of the
number of spanning trees of the graph and the number of spanning trees of the corresponding one-edge-deleted subgraph.
The result can be then interpreted as a kind of spanning tree sensitive complexity measure of a network, see [52]. Note that
many similar information measures for describing disorder and complexity of networks can be found in [14,25,83]. More-
over, various non-information-theoretic techniques for determining the complexity of networks have been investigated re-
cently. For further details, see, e.g., [4,10,27,26,52].

In computer-related disciplines, graph entropies have also been proven to be useful. For example, information measures
have been used for measuring the complexity of software abstractions [1]. In this work, graph patterns are represented as
hypergraphs and the resulting entropies are used to measure size, complexity, coupling, and their significance, see [1]. In
a more recent contribution, Borgert et al. [16] investigated business processes represented by undirected graphs and deter-
mined their structural complexity by using information-theoretic and non-information-theoretic graph measures. In this re-
search, the challenge is to find measures which can encode structural information uniquely, i.e., those whose discrimination
power is high [16]. As in applications in mathematical chemistry [11,35,85], graph entropy measures were found to be the
best measures to distinguish non-isomorphic process graphs uniquely [16]. Ideally, complexity measures for process models
could be used to detect errors, see, e.g., [1,57] and, hence, they could serve as useful tools when designing and analyzing pro-
cess models such as graphs inferred from real-life business or software processes. In computational linguistics, Mehler [62]
employed graph entropy measures as balance or imbalance measures by using so-called ‘social ontology graphs’ represent-
ing complex hierarchical structures. Entropy measures have been found to be useful for detecting significant structural char-
acterizes of social ontologies [62].

In addition to the classical contributions mentioned in Section 2.3, information theory has been applied in modern bio-
logically-related disciplines such as systems biology, computational biology and ecology [95,90]. For example, Ulanowicz
[89,90] discussed various measures for the quantitative analysis of flow graphs representing directed ecological networks.
Examples include the use of Shannon’s entropy to measure uncertainty in the flows and the biodiversity of an ecological sys-
tem, see [89,90]. Moreover, other information measures like conditional entropy and mutual information have been applied
to the analysis of ecological networks [89,90]. For a discussion of other information-theoretic measures in this context, see
[47,89,90]. Special biological systems such as gene networks are yet another arena for application of entropy measures [2]. In
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[2], Altay and Emmert-Streib performed a statistical analysis using information-theoretic techniques to investigate network
inference algorithms for inferring gene networks. Also, Emmert-Streib and Dehmer [41] explored the information spread in a
gene network by performing single gene knockouts. Finally, the deviation between perturbed and unperturbed communica-
tion in networks was measured using the Kullback–Leibler distance [56]. Further related work can be found in, e.g.,
[20,51,61].

5. Summary and conclusion

Shannon’s entropy measure has been used in diverse contexts to characterize graphs and properties of graphs. This survey
has attempted to capture the variety of applications and to highlight underlying similarities and differences between the
entropy measures. Beginning with the classical work on structural information content of graphs, we proceeded to examine
the extensive research dealing with entropy measures designed to characterize graphs representing chemical structures.
This was followed by an examination of entropy measures based on local as opposed to global graph properties. The small
body of research on the use of entropy measures to analyze social network structures was included in the survey because of
its potential importance. Current research on parametric entropy measures to quantify the information content of graphs
extends the range of applications by allowing for the definition of families of entropy measures. Graph decomposition offers
yet another method for defining entropy measures, in particular by making use of ‘natural’ vertex partitions on hierarchical
graphs. The last part of the survey examined information inequalities, relations between entropy measures, and correlations
between some selected graph entropies with a view to illuminating the problem of determining the nature of the structural
information captured by the measures.

The wide applicability of graph-based models offers a virtually limitless field for the use of Shannon’s entropy to measure
structural differences. Identification and classification of structural configurations in networks pose challenging problems for
which entropy measures have proven useful. Further development of the theory of entropy measures and progress in design-
ing efficient algorithms for computing entropy are needed to meet this challenge.
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