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Abstract. We generalize the primal-dual hybrid gradient (PDHG) algorithm proposed by Zhu and Chan in
[An Efficient Primal-Dual Hybrid Gradient Algorithm for Total Variation Image Restoration, CAM
Report 08-34, UCLA, Los Angeles, CA, 2008] to a broader class of convex optimization problems.
In addition, we survey several closely related methods and explain the connections to PDHG. We
point out convergence results for a modified version of PDHG that has a similarly good empirical
convergence rate for total variation (TV) minimization problems. We also prove a convergence
result for PDHG applied to TV denoising with some restrictions on the PDHG step size parameters.
We show how to interpret this special case as a projected averaged gradient method applied to
the dual functional. We discuss the range of parameters for which these methods can be shown to
converge. We also present some numerical comparisons of these algorithms applied to TV denoising,
TV deblurring, and constrained l1 minimization problems.
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1. Introduction. Total variation (TV) minimization problems arise in many image pro-
cessing applications for regularizing inverse problems where one expects the recovered image
or signal to be piecewise constant or have a sparse gradient. However, a lack of differentiabil-
ity makes minimizing TV regularized functionals computationally challenging, and so there
is considerable interest in efficient algorithms, especially for large scale problems. More gen-
erally, there is interest in practical methods for solving nondifferentiable convex optimization
problems, TV minimization being an important special case.

The primal-dual hybrid gradient (PDHG) algorithm [58] in a general setting is a method
for solving problems of the form

min
u∈Rm

J(Au) +H(u),

where J and H are closed proper convex functions and A ∈ R
n×m. Usually, J(Au) will

correspond to a regularizing term of the form ‖Au‖, in which case the PDHG method works
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by using duality to rewrite it as the saddle point problem

min
u∈Rm

max
‖p‖∗≤1

〈p,Au〉+H(u)

and then alternating dual and primal steps of the form

pk+1 = arg max
‖p‖∗≤1

〈p,Auk〉 − 1

2δk
‖p− pk‖22,

uk+1 = arg min
u∈Rm

〈pk+1, Au〉 +H(u) +
1

2αk
‖u− uk‖22

for appropriate parameters αk and δk. Here, ‖ · ‖ denotes an arbitrary norm on R
n and ‖ · ‖∗

denotes its dual norm defined by

‖x‖∗ = max
‖y‖≤1

〈x, y〉,

where 〈·, ·〉 is the standard Euclidean inner product. Formulating the saddle point problem
uses the fact that ‖ · ‖∗∗ = ‖ · ‖ [32], from which it follows that ‖Au‖ = max‖p‖∗≤1〈p,Au〉.

PDHG can also be applied to more general convex optimization problems. However, its
performance for problems such as TV denoising is of special interest since it compares favorably
with other popular methods. An adaptive time stepping scheme for PDHG was proposed in
[58] and shown to outperform other popular TV denoising algorithms like Chambolle’s method
[10], the method of Chan, Golub, and Mulet (CGM) [13], fast total variation deconvolution
(FTVd) [51], and split Bregman [29] in many numerical experiments with a wide variety of
stopping conditions. Aside from some special cases of the PDHG algorithm such as gradient
projection and subgradient descent, the theoretical convergence properties were not known.

PDHG is an example of a first order method, meaning that it requires only functional and
gradient evaluations. Other examples of first order methods popular for TV minimization
include gradient descent, Chambolle’s method, FTVd, and split Bregman. Second order
methods, such as CGM and semismooth Newton approaches [30, 31, 17], work by essentially
applying Newton’s method to an appropriate formulation of the optimality conditions and
therefore also require information about the Hessian. This usually requires some smoothing
of the objective functional. These methods can be superlinearly convergent and are therefore
useful for computing benchmark solutions of high accuracy. However, the cost per iteration
is usually higher, so for large scale problems or when high accuracy is not required, these are
often less practical than the first order methods that have much lower cost per iteration. Here,
we will focus on a class of first order methods related to PDHG that are simple to implement
and can also be directly applied to nondifferentiable functionals.

PDHG is also an example of a primal-dual method. Each iteration updates both a primal
and a dual variable. It is thus able to avoid some of the difficulties that arise when working only
on the primal or the dual side. For example, for TV minimization, gradient descent applied
to the primal functional has trouble where the gradient of the solution is zero because the
functional is not differentiable there. Chambolle’s method is a method on the dual that is very
effective for TV denoising, but does not easily extend to applications where the dual problem is
more complicated, such as TV deblurring. Primal-dual algorithms can avoid these difficulties
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to some extent. Other examples include CGM, the semismooth Newton approaches mentioned
above, split Bregman, and, more generally, other Bregman iterative algorithms [56, 55, 54]
and Lagrangian-based methods.

In this paper we show that we can make a small modification to the PDHG algorithm
which has little effect on its performance but allows the modified algorithm to be interpreted
as a special case of a split inexact Uzawa method that is analyzed and shown to converge
in [57]. After initial preparation of this paper, it was brought to our attention that the specific
modified PDHG algorithm applied here had been previously proposed by Pock et al. [40] for
minimizing the Mumford–Shah functional. In [40] the authors also proved convergence for a
special class of saddle point problems. In recent preprints [11, 12] that appeared during the
current paper’s review process, this convergence argument has been generalized and gives a
stronger statement of the convergence of the modified PDHG algorithm for the same range of
fixed parameters. Chambolle and Pock also provide a convergence rate analysis in [12]. While
the modified PDHG method with fixed step sizes is nearly as effective as fixed parameter
versions of PDHG, well-chosen adaptive step sizes can improve the rate of convergence. It
is proved in [12] that certain adaptive step size schemes accelerate the convergence rate of
the modified PDHG method in cases when the objective functional has additional regularity.
With more restrictions on the step size parameters, we prove a convergence result for the
original PDHG method applied to TV denoising by interpreting it as a projected averaged
gradient method on the dual.

We additionally show that the modified PDHG method can be applied in the same ways
PDHG was extended in [58] to apply to additional problems such as TV deblurring, l1 min-
imization, and constrained minimization problems. For these applications we point out the
range of parameters for which the convergence theory is applicable.

Another contribution of this paper is to describe a general algorithm framework from the
perspective of PDHG that explains the close connections to modified PDHG, split inexact
Uzawa, and more classical methods including proximal forward backward splitting (PFBS)
[34, 39, 15], the alternating minimization algorithm (AMA) [50], the alternating direction
method of multipliers (ADMM) [25, 27, 6], and Douglas–Rachford splitting [18, 24, 26, 19, 20].
These connections provide some additional insight about where PDHG and modified PDHG
fit relative to existing methods.

The organization of this paper is as follows. In section 2, we discuss primal-dual formula-
tions for a general problem. We define a general version of PDHG and discuss in detail the
framework in which it can be related to other similar algorithms. These connections are dia-
grammed in Figure 1. In section 3, we define a discretization of the TV seminorm and review
the details about applying PDHG to TV deblurring–type problems. In section 4, we show how
to interpret PDHG applied to TV denoising as a projected averaged gradient method on the
dual and present a convergence result for a special case. Then in section 5, we discuss the ap-
plication of the modified PDHG algorithm to constrained TV and l1 minimization problems.
Section 6 presents numerical experiments for TV denoising, constrained TV deblurring, and
constrained l1 minimization, comparing the performance of the modified PDHG algorithm
with that of other methods.

2. General algorithm framework. In this section we consider a general class of problems
to which PDHG can be applied. We define equivalent primal, dual, and several primal-dual
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formulations. We also place PDHG in a general framework that connects it to other related
alternating direction methods applied to saddle point problems.

2.1. Primal-dual formulations. PDHG can more generally be applied to what we will
refer to as the primal problem,

min
u∈Rm

FP (u),(P)

where

(2.1) FP (u) = J(Au) +H(u),

A ∈ R
n×m, and J : R

n → (−∞,∞] and H : R
m → (−∞,∞] are closed proper convex

functions. Assume that there exists a solution u∗ to (P). So that we can use Fenchel duality
[44, Corollary 31.2.1] later, we also assume that there exists u ∈ ri(domH) such that Au ∈
ri(dom J), which is almost always true in practice. When J is a norm, it is shown how to use
the dual norm to define a saddle point formulation of (P) as

min
u∈Rm

max
‖p‖∗≤1

〈Au, p〉 +H(u).

This can equivalently be written in terms of the Legendre–Fenchel transform, or convex con-
jugate, of J , denoted by J∗ and defined by

J∗(p) = sup
w∈Rn

〈p,w〉 − J(w).

When J is a closed proper convex function, we have that J∗∗ = J [21]. Therefore,

J(Au) = sup
p∈Rn

〈p,Au〉 − J∗(p).

Thus an equivalent saddle point formulation of (P) is

min
u∈Rm

sup
p∈Rn

LPD(u, p),(PD)

where

(2.2) LPD = 〈p,Au〉 − J∗(p) +H(u).

This holds even when J is not a norm, but in the case when J(w) = ‖w‖, we can then use
the dual norm representation of ‖w‖ to write

J∗(p) = sup
w

〈p,w〉 − max
‖y‖∗≤1

〈w, y〉

=

{
0 if ‖p‖∗ ≤ 1,

∞ otherwise,

in which case we can interpret J∗ as the indicator function for the unit ball in the dual norm.
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Let (u∗, p∗) be a saddle point of LPD. In particular, this means that

max
p∈Rn

〈p,Au∗〉 − J∗(p) +H(u∗) = LPD(u
∗, p∗) = min

u∈Rm
〈p∗, Au〉 +H(u)− J∗(p∗),

from which we can deduce the equivalent optimality conditions and then use the definitions
of the Legendre transform and subdifferential to write these conditions in two ways:

−AT p∗ ∈ ∂H(u∗) ⇔ u∗ ∈ ∂H∗(−AT p∗),(2.3)

Au∗ ∈ ∂J∗(p∗) ⇔ p∗ ∈ ∂J(Au∗),(2.4)

where ∂ denotes the subdifferential. The subdifferential ∂F (x) of a convex function F : Rm →
(−∞,∞] at the point x is defined by the set

∂F (x) = {q ∈ R
m : F (y) ≥ F (x) + 〈q, y − x〉 ∀y ∈ R

m}.
Another useful saddle point formulation, which we will refer to as the split primal problem,

is obtained by introducing the constraint w = Au in (P) and forming the Lagrangian

(2.5) LP (u,w, p) = J(w) +H(u) + 〈p,Au− w〉.
The corresponding saddle point problem is

max
p∈Rn

inf
u∈Rm,w∈Rn

LP (u,w, p).(SPP)

Although p was introduced in (2.5) as a Lagrange multiplier for the constraint Au = w, it
has the same interpretation as the dual variable p in (PD). It follows immediately from the
optimality conditions that if (u∗, w∗, p∗) is a saddle point for (SPP), then (u∗, p∗) is a saddle
point for (PD).

The dual problem is

max
p∈Rn

FD(p),(D)

where the dual functional FD(p) is a concave function defined by

(2.6) FD(p) = inf
u∈Rm

LPD(u, p) = inf
u∈Rm

〈p,Au〉 − J∗(p) +H(u) = −J∗(p)−H∗(−AT p).

Note that this is equivalent to defining the dual by

(2.7) FD(p) = inf
u∈Rm,w∈Rn

LP (u,w, p).

Since we assumed that there exists an optimal solution u∗ to the convex problem (P), it follows
from Fenchel duality [44, Corollary 31.2.1] that there exists an optimal solution p∗ to (D) and
FP (u

∗) = FD(p
∗). Moreover, u∗ solves (P) and p∗ solves (D) if and only if (u∗, p∗) is a saddle

point of LPD(u, p) [44, Lemma 36.2].
By introducing the constraint y = −AT p in (D) and forming the corresponding Lagrangian

(2.8) LD(p, y, u) = J∗(p) +H∗(y) + 〈u,−AT p− y〉,



1020 ERNIE ESSER, XIAOQUN ZHANG, AND TONY F. CHAN

we obtain yet another saddle point problem,

max
u∈Rm

inf
p∈Rn,y∈Rm

LD(p, y, u),(SPD)

which we will refer to as the split dual problem. Although u was introduced in (SPD) as a
Lagrange multiplier for the constraint y = −ATp, it actually has the same interpretation as
the primal variable u in (P). Again, it follows from the optimality conditions that if (p∗, y∗, u∗)
is a saddle point for (SPD), then (u∗, p∗) is a saddle point for (PD). Note also that

FP (u) = − inf
p∈Rn,y∈Rm

LD(p, y, u).

2.2. Algorithm framework and connections to PDHG. In this section we define a general
version of PDHG applied to (PD) and discuss connections to related algorithms that can be
interpreted as alternating direction methods applied to (SPP) and (SPD). These connections
are summarized in Figure 1.

The main tool for drawing connections between the algorithms in this section is the Moreau
decomposition [35, 15].

Theorem 2.1 (see [15]). If J is a closed proper convex function on R
m and f ∈ R

m, then

(2.9) f = argmin
u

J(u) +
1

2α
‖u− f‖22 + α argmin

p
J∗(p) +

α

2

∥∥∥∥p− f

α

∥∥∥∥
2

2

.

It was shown in [58] that PDHG applied to TV denoising can be interpreted as a primal-
dual proximal point method applied to a saddle point formulation of the problem [43]. More
generally, applied to (PD) it yields the following algorithm.

Algorithm. PDHG on (PD).

pk+1 = arg max
p∈Rn

−J∗(p) + 〈p,Auk〉 − 1

2δk
‖p− pk‖22,(2.10a)

uk+1 = arg min
u∈Rm

H(u) + 〈AT pk+1, u〉+ 1

2αk
‖u− uk‖22.(2.10b)

Here, p0, u0 are arbitrary and αk, δk > 0.

2.2.1. Proximal forward backward splitting: Special cases of PDHG. Two notable spe-
cial cases of PDHG are αk = ∞ and δk = ∞. These special cases correspond to the PFBS
method [34, 39, 15] applied to (D) and (P), respectively.

PFBS is an iterative splitting method that can be used to find a minimum of a sum of two
convex functionals by alternating a (sub-)gradient descent step with a proximal step. Applied
to (D) it yields

(2.11) pk+1 = arg min
p∈Rn

J∗(p) +
1

2δk
‖p − (pk + δkAu

k+1)‖22,

where uk+1 ∈ ∂H∗(−AT pk). Since uk+1 ∈ ∂H∗(−AT pk) ⇔ −ATpk ∈ ∂H(uk+1), which is
equivalent to
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uk+1 = arg min
u∈Rm

H(u) + 〈AT pk, u〉,
(2.11) can be written as the following algorithm.

Algorithm. PFBS on (D).

uk+1 = arg min
u∈Rm

H(u) + 〈AT pk, u〉,(2.12a)

pk+1 = arg min
p∈Rn

J∗(p) + 〈p,−Auk+1〉+ 1

2δk
‖p − pk‖22.(2.12b)

Even though the order of the updates is reversed relative to PDHG, since the initialization is
arbitrary, it is still a special case of (2.10), where αk = ∞.

If we assume that J(·) = ‖ · ‖, we can interpret the pk+1 step as an orthogonal projection
onto a convex set,

pk+1 = Π{p:‖p‖∗≤1}
(
pk + δkAu

k+1
)
.

Then PFBS applied to (D) can be interpreted as a (sub-)gradient projection algorithm.
As a special case of [15, Theorem 3.4], the following convergence result applies to (2.12).
Theorem 2.2. Fix p0 ∈ R

n, u0 ∈ R
m and let (uk, pk) be defined by (2.12). If H∗ is

differentiable, ∇(H∗(−AT p)) is Lipschitz continuous with Lipschitz constant equal to 1
β , and

0 < inf δk ≤ sup δk < 2β, then {pk} converges to a solution of (D) and {uk} converges to the
unique solution of (P).

Proof. Convergence of {pk} to a solution of (D) follows from [15, Theorem 3.4]. From
(2.12a), uk+1 satisfies −ATpk ∈ ∂H(uk+1), which, from the definitions of the subdifferential
and Legendre transform, implies that uk+1 = ∇H∗(−AT pk). So by continuity of ∇H∗, uk →
u∗ = ∇H∗(−AT p∗). From (2.12b) and the convergence of {pk}, Au∗ ∈ ∂J∗(p∗). Therefore
(u∗, p∗) satisfies the optimality conditions (2.3), (2.4) for (PD), which means u∗ solves (P)
[44, Theorem 31.3]. Uniqueness follows from the assumption that H∗ is differentiable, which
by [44, Theorem 26.3] means that H(u) in the primal functional is strictly convex.

It will be shown in section 2.2.3 how to equate modified versions of the PDHG algorithm
with convergent alternating direction methods, namely, split inexact Uzawa methods from [57]
applied to the split primal (SPP) and split dual (SPD) problems. The connection there is very
similar to the equivalence from [50] between PFBS applied to (D) and what Tseng in [50] called
the alternating minimization algorithm (AMA) applied to (SPP). AMA applied to (SPP) is
an alternating direction method that alternately minimizes first the Lagrangian LP (u,w, p)
with respect to u and then the augmented Lagrangian LP + δk

2 ‖Au − w‖22 with respect to w
before updating the Lagrange multiplier p.

Algorithm. AMA on (SPP).

uk+1 = arg min
u∈Rm

H(u) + 〈AT pk, u〉,(2.13a)

wk+1 = arg min
w∈Rn

J(w) − 〈pk, w〉 + δk
2
‖Auk+1 −w‖22,(2.13b)

pk+1 = pk + δk(Au
k+1 − wk+1).(2.13c)
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To see the equivalence between (2.12) and (2.13), first note that (2.13a) is identical to
(2.12a), so it suffices to show that (2.13b) and (2.13c) together are equivalent to (2.12b).
Combining (2.13b) and (2.13c) yields

pk+1 = (pk + δkAu
k+1)− δk argmin

w
J(w) +

δk
2

∥∥∥∥w − (pk + δkAu
k+1)

δk

∥∥∥∥
2

2

.

By the Moreau decomposition (Theorem 2.1), this is equivalent to

pk+1 = argmin
p

J∗(p) +
1

2δk
‖p − (pk + δkAu

k+1)‖22,

which is exactly (2.12b).
In [50], convergence of (uk, wk, pk) satisfying (2.13) to a saddle point of LP (u,w, p) is

directly proved under the assumption that H is strongly convex, an assumption that directly
implies the condition on H∗ in Theorem 2.2.

The other special case of PDHG, where δk = ∞, can be analyzed in a similar manner.
The following corresponding algorithm is PFBS applied to (P).

Algorithm. PFBS on (P).

pk+1 = arg min
p∈Rn

J∗(p) + 〈−Auk, p〉,(2.14a)

uk+1 = arg min
u∈Rm

H(u) + 〈u,AT pk+1〉+ 1

2αk
‖u− uk‖22.(2.14b)

This is analogously equivalent to AMA applied to (SPD), as follows.

Algorithm. AMA on (SPD).

pk+1 = arg min
p∈Rm

J∗(p) + 〈−Auk, p〉,(2.15a)

yk+1 = arg min
y∈Rm

H∗(y)− 〈uk, y〉+ αk

2
‖y +AT pk+1‖22,(2.15b)

uk+1 = uk + αk(−AT pk+1 − yk+1).(2.15c)

The equivalence again follows from the Moreau decomposition (Theorem 2.1), and the anal-
ogous version of Theorem 2.2 applies to (2.14).

2.2.2. Reinterpretation of PDHG as relaxed AMA. The general form of PDHG (2.10)
can also be interpreted as alternating direction methods applied to (SPP) or (SPD). These
interpretations turn out to be relaxed forms of AMA. They can be obtained by modifying
the objective functional for the Lagrangian minimization step by adding either 1

2αk
‖u− uk‖22

to (2.13a) or 1
2δk

‖p − pk‖22 to (2.15a). The equivalence of these relaxed AMAs to the general
form of PDHG (2.10) follows by an argument similar to that in section 2.2.1.
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Although equating PDHG to this relaxed AMA does not yield any direct convergence
results for PDHG, it does show a close connection to the alternating direction method of
multipliers (ADMM) [25, 27, 6], which does have a well-established convergence theory [20].
If, instead of adding proximal terms of the form 1

2αk
‖u − uk‖22 and 1

2δk
‖p − pk‖22 to the first

step of AMA applied to (SPP) and (SPD), we fix α and δ and add the augmented Lagrangian
penalties δ

2‖Au−wk‖22 and α
2 ‖AT p+ yk‖22, then we get exactly ADMM applied to (SPP) and

(SPD), respectively.

ADMM applied to (SPP) can be interpreted as Douglas–Rachford splitting [18] applied
to (D), and ADMM applied to (SPD) can be interpreted as Douglas–Rachford splitting applied
to (P) [24, 26, 19, 20]. It is also shown in [23, 46, 53] how to interpret these as the split Bregman
algorithm of [29]. A general convergence result for ADMM can be found in [20].

2.2.3. Modifications of PDHG. In this section we show that two slightly modified ver-
sions of the PDHG algorithm, denoted PDHGMp and PDHGMu, can be interpreted as a split
inexact Uzawa method from [57] applied to (SPP) and (SPD), respectively. In the constant
step size case, PDHGMp replaces pk+1 in the uk+1 step (2.10b) with 2pk+1 − pk, whereas
PDHGMu replaces uk in the pk+1 step (2.10a) with 2uk − uk−1. The variable step size case
will also be discussed. For appropriate parameter choices these modified algorithms are nearly
as efficient as PDHG numerically, and known convergence results [57, 11, 12] can be applied.
Convergence of PDHGMu for a special class of saddle point problems is also proved in [40]
based on an argument in [41].

The split inexact Uzawa method from [57] applied to (SPD) can be thought of as a modi-
fication of ADMM. Applying the main idea of the Bregman operator splitting algorithm from
[56], it adds 1

2〈p− pk, ( 1
δk
I − αkAA

T )(p− pk)〉 to the penalty term αk
2 ‖AT p+ yk‖22 in the ob-

jective functional for the first minimization step. To ensure 1
δk
I − αkAA

T is positive definite,

choose 0 < δk < 1
αk‖A‖2 . Adding this extra term, as in the surrogate functional approach

of [16], has the effect of linearizing the penalty term and decoupling the variables previously
coupled by the matrix AT . The updates for yk+1 and uk+1 remain the same as for ADMM.
By combining terms for the pk+1 update, the resulting algorithm can be written as follows.

Algorithm. Split inexact Uzawa applied to (SPD).

pk+1 = arg min
p∈Rn

J∗(p) + 〈−Auk, p〉+ 1

2δk
‖p− pk + αkδkA(A

T pk + yk)‖22,(2.16a)

yk+1 = arg min
y∈Rm

H∗(y)− 〈uk, y〉+ αk

2
‖y +AT pk+1‖22,(2.16b)

uk+1 = uk + αk(−AT pk+1 − yk+1).(2.16c)

The above algorithm can be shown to converge at least for fixed step sizes α and δ satisfying
0 < δ < 1

α‖A‖2 .
Theorem 2.3 (see [57]). Let αk = α > 0, δk = δ > 0, and 0 < δ < 1

α‖A‖2 . Let (pk, yk, uk)

satisfy (2.16). Also let p∗ be optimal for (D) and y∗ = −AT p∗. Then

• ‖AT pk + yk‖2 → 0,
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• J∗(pk) → J∗(p∗),
• H∗(yk) → H∗(y∗),

and all convergent subsequences of (pk, yk, uk) converge to a saddle point of LD (2.8).

Moreover, the split inexact Uzawa algorithm can be rewritten in a form that is very similar
to PDHG. Since the yk+1 (2.16b) and uk+1 (2.16c) steps are the same as those for AMA on
(SPD) (2.15), by the same argument they are equivalent to the uk+1 update in PDHG (2.10b).
From (2.16c), we have that

(2.17) yk =
uk−1

αk−1
− uk

αk−1
−AT pk.

Substituting this into (2.16a), we see that (2.16) is equivalent to a modified form of PDHG,
where uk is replaced by

(
(1 + αk

αk−1
)uk − αk

αk−1
uk−1

)
in (2.10a). The resulting form of the

algorithm, which follows, will be denoted PDHGMu.

Algorithm. PDHGMu.

pk+1 = arg min
p∈Rn

J∗(p) +
〈
p,−A

((
1 +

αk

αk−1

)
uk − αk

αk−1
uk−1

)〉
+

1

2δk
‖p− pk‖22,(2.18a)

uk+1 = arg min
u∈Rm

H(u) + 〈AT pk+1, u〉+ 1

2αk
‖u− uk‖22.(2.18b)

Note that from (2.17) and (2.18b), yk+1 ∈ ∂H(uk+1), which we could substitute instead of
(2.17) into (2.16a) to get an equivalent version of PDHGMu, whose updates depend only on
the previous iteration instead of the previous two.

By the equivalence of PDHGMu and split inexact Uzawa on (SPD), Theorem 2.3 again
applies to the PDHGMu iterates with yk defined by (2.17). However, there is a stronger
statement for the convergence of PDHGMu in [11, 12].

Theorem 2.4 (see [11]). Let αk = α > 0, δk = δ > 0, and 0 < δ < 1
α‖A‖2 . Let (pk, uk)

satisfy (2.18). Then (uk, pk) converges to a saddle point of LPD (2.2).

Similarly, the corresponding split inexact Uzawa method applied to (SPP) is obtained by
adding 1

2〈u− uk, ( 1
αk

I − δkA
TA)(u− uk)〉 to the uk+1 step of ADMM applied to (SPP). This

leads to a similar modification of PDHG denoted as PDHGMp, where pk+1 is replaced by(
(1 +

δk+1

δk
)pk+1 − δk+1

δk
pk
)
in (2.10b).

The modifications to uk and pk in the split inexact Uzawa methods are reminiscent of the
predictor-corrector step in Chen and Teboulle’s predictor-corrector proximal method (PCPM)
[14, 49]. Despite some close similarities, however, the algorithms are not equivalent. The
modified PDHG algorithms are more implicit than PCPM.

The connections between the algorithms discussed so far are diagrammed in Figure 1. For
simplicity, constant step sizes are assumed in the diagram. Double arrows indicate equivalences
between algorithms, while single arrows show how to modify them to arrive at related methods.
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(P) minu FP (u)

FP (u) = J(Au) +H(u)

(D) maxp FD(p)

FD(p) = −J∗(p)−H∗(−AT p)

(PD) minu supp LPD(u, p)

LPD(u, p) = 〈p,Au〉 − J∗(p) +H(u)

(SPP) maxp infu,w LP (u, w, p)

LP (u,w, p) = J(w) +H(u) + 〈p,Au− w〉
(SPD) maxu infp,y LD(p, y, u)

LD(p, y, u) = J∗(p) +H∗(y) + 〈u,−AT p− y〉

� �

AMA
on

(SPP)

��
PFBS
on
(D)

PFBS
on
(P)

��
AMA
on

(SPD)

�����������

�����������
+ 1

2α‖u− uk‖22 + 1
2δ‖p− pk‖22

	
	
	

	
	

	
	

	
	

		


�
�
�
�
�
�
�
�
�
���

+ δ
2‖Au− w‖22 +α

2 ‖AT p+ y‖22

Relaxed AMA
on (SPP)

Relaxed AMA
on (SPD)





�




� �
����
���

ADMM
on

(SPP)

��
Douglas–
Rachford

on
(D)

Douglas–
Rachford

on
(P)

��
ADMM

on
(SPD)



 ��





�

�
���

+ 1
2 〈u − uk, ( 1

αI − δATA)(u − uk)〉 + 1
2 〈p− pk, (1δ I − αAAT )(p− pk)〉

Primal-Dual Proximal Point on
(PD)
=

PDHG

�
�

�
���









�

pk+1 →
2pk+1 − pk

uk →
2uk − uk−1

Split
Inexact
Uzawa

on (SPP)

�� PDHGMp PDHGMu ��
Split

Inexact
Uzawa

on (SPD)

Legend: (P): Primal
(D): Dual
(PD): Primal-Dual
(SPP): Split Primal
(SPD): Split Dual

AMA: Alternating Minimization Algorithm (2.2.1)
PFBS: Proximal Forward Backward Splitting (2.2.1)
ADMM: Alternating Direction Method of Multipliers (2.2.2)
PDHG: Primal Dual Hybrid Gradient (2.2)
PDHGM: Modified PDHG (2.2.3)
Bold: Well Understood Convergence Properties

Figure 1. PDHG-related algorithm framework.
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3. PDHG for TV deblurring. In this section we review from [58] the application of PDHG
to the TV deblurring and denoising problems, but using the present notation. Both problems
are of the form

(3.1) min
u∈Rm

‖u‖TV +
λ

2
‖Ku− f‖22,

where ‖ · ‖TV denotes the discrete TV seminorm to be defined. If K is a linear blurring
operator, this corresponds to a TV regularized deblurring model. It also includes the TV
denoising case when K = I [45]. These applications are analyzed in [58], which also mentions
possible extensions, such as to TV denoising with a constraint on the variance of u and also
to l1 minimization.

3.1. Total variation discretization. We define a discretization of the TV seminorm and in
particular define a norm, ‖ · ‖E , and a matrix, D, such that ‖u‖TV = ‖Du‖E . Thus (3.1) is of
the same form as the primal problem (P) with J(w) = ‖w‖E , A = D, andH(u) = λ

2 ‖Ku−f‖22.
The details are included for completeness.

Define the discretized version of the TV seminorm by

(3.2) ‖u‖TV =

Mr∑
p=1

Mc∑
q=1

√
(D+

1 up,q)
2 + (D+

2 up,q)
2

for u ∈ R
Mr×Mc . Here, D+

k represents a forward difference in the kth index, and we assume
Neumann boundary conditions. It will be useful to instead work with vectorized u ∈ R

MrMc

and to rewrite ‖u‖TV . The convention for vectorizing an Mr ×Mc matrix will be to associate
the (p, q) element of the matrix with the (q − 1)Mr + p element of the vector. Consider a
graph G(E ,V) defined by an Mr × Mc grid with V = {1, . . . ,MrMc} the set of m = MrMc

nodes and E the set of e = 2MrMc −Mr −Mc edges. Assume that the nodes are indexed so
that the node corresponding to element (p, q) is indexed by (q − 1)Mr + p. The edges, which
will correspond to forward differences, can be indexed arbitrarily. Define D ∈ R

e×m to be
the edge-node adjacency matrix for this graph. So for a particular edge η ∈ E with endpoint
indices i, j ∈ V and i < j, we have

(3.3) Dη,ν =

⎧⎪⎨
⎪⎩
−1 for ν = i,

1 for ν = j,

0 for ν 
= i, j.

The matrix D is a discretization of the gradient, and −DT is the corresponding discretization
of the divergence [22].

Also define E ∈ R
e×m such that

(3.4) Eη,ν =

{
1 if Dη,ν = −1,

0 otherwise.

The matrix E will be used to identify the edges used in each forward difference. Now define
a norm on R

e by

(3.5) ‖w‖E =
m∑
ν=1

(√
ET (w2)

)
ν
.
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Note that in this context, the square root and w2 denote componentwise operations. Another
way to interpret ‖w‖E is as the sum of the l2 norms of vectors wν , where

(3.6) wν =

⎡
⎢⎢⎣

...
we
...

⎤
⎥⎥⎦ for e such that Ee,ν = 1, ν = 1, . . . ,m.

Typically, which is to say away from the boundary, wν is of the form wν =
[weν

1
weν

2

]
, where eν1

and eν2 are the edges used in the forward difference at node ν. So in terms of wν , ‖w‖E =∑m
ν=1 ‖wν‖2, and we take ‖wν‖2 = 0 in the case that wν is empty for some ν. The discrete

TV seminorm defined above (3.2) can be written in terms of ‖ · ‖E as

‖u‖TV = ‖Du‖E .

Use of the matrix E is nonstandard but also more general. For example, by redefining D and
adding edge weights, this notation can be easily extended to other discretizations and even
nonlocal TV.

By definition, the dual norm ‖ · ‖E∗ to ‖ · ‖E is

(3.7) ‖x‖E∗ = max
‖y‖E≤1

〈x, y〉.

This dual norm arises in the saddle point formulation of (3.1) on which the PDHG algorithm
for TV deblurring is based. If xν is defined analogously to wν in (3.6), then the Cauchy–
Schwarz inequality can be used to show that

‖x‖E∗ = max
ν

‖xν‖2.

Altogether, ‖ · ‖E and ‖ · ‖E∗ are analogous to ‖ · ‖1 and ‖ · ‖∞, respectively, and can be
expressed as

‖w‖E =
∥∥√ET (w2)

∥∥
1
=

m∑
ν=1

‖wν‖2 and ‖x‖E∗ =
∥∥√ET (x2)

∥∥
∞ = max

ν
‖xν‖2.

3.2. Saddle point formulations. The saddle point formulation for PDHG applied to TV
minimization problems in [58] is based on the observation that

(3.8) ‖u‖TV = max
p∈X

〈p,Du〉,

where

(3.9) X = {p ∈ R
e : ‖p‖E∗ ≤ 1} .

The set X, which is the unit ball in the dual norm of ‖ · ‖E , can also be interpreted as a
Cartesian product of unit balls in the l2 norm. For example, in order for Du to be in X, the
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discretized gradient
[ up+1,q−up,q

up,q+1−up,q

]
of u at each node (p, q) would have to have Euclidean norm

less than or equal to 1. The dual norm interpretation is another way to explain (3.8) since

max
{p:‖p‖E∗≤1}

〈p,Du〉 = ‖Du‖E ,

which equals ‖u‖TV by definition. Using duality to rewrite ‖u‖TV is common to many primal-
dual approaches for TV minimization including CGM [13], the second order cone programming
formulation used in [28], and the semismooth Newton methods in [30, 31, 17]. Here, analogous
to the definition of (PD), it can be used to reformulate problem (3.1) as the min-max problem

(3.10) min
u∈Rm

max
p∈X

Φ(u, p) := 〈p,Du〉+ λ

2
‖Ku− f‖22.

3.3. Existence of saddle point. One way to ensure that there exists a saddle point (u∗, p∗)
of the convex-concave function Φ is to restrict u and p to be in bounded sets. Existence then
follows from [44, Theorem 37.6]. The dual variable p is already required to lie in the convex
set X. Assume that

ker(D)
⋂

ker(K) = {0}.
This is equivalent to assuming that ker(K) does not contain the vector of all ones, which is very
reasonable for deblurring problems where K is an averaging operator. With this assumption,
it follows that there exists c ∈ R such that the set{

u : ‖Du‖E +
λ

2
‖Ku− f‖22 ≤ c

}

is nonempty and bounded. Thus we can restrict u to a bounded convex set.

3.4. Optimality conditions. If (u∗, p∗) is a saddle point of Φ, it follows that

max
p∈X

〈p,Du∗〉+ λ

2
‖Ku∗ − f‖22 = Φ(u∗, p∗) = min

u∈Rm
〈p∗,Du〉+ λ

2
‖Ku− f‖22,

from which we can deduce the optimality conditions

DT p∗ + λKT (Ku∗ − f) = 0,(3.11)

p∗E
√

ET (Du∗)2 = Du∗,(3.12)

p∗ ∈ X.(3.13)

The second optimality condition (3.12) with E defined by (3.4) can be understood as a dis-
cretization of p∗|∇u∗| = ∇u∗.

3.5. PDHG for unconstrained TV deblurring. In [58] it is shown how to interpret the
PDHG algorithm applied to (3.1) as a primal-dual proximal point method for solving (3.10)
by iterating

pk+1 = argmax
p∈X

〈p,Duk〉 − 1

2λτk
‖p− pk‖22,(3.14a)

uk+1 = arg min
u∈Rm

〈pk+1,Du〉+ λ

2
‖Ku− f‖22 +

λ(1− θk)

2θk
‖u− uk‖22.(3.14b)
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The index k denotes the current iteration. Also, τk and θk are the dual and primal step sizes,
respectively. The parameters in terms of δk and αk from (2.10) are given by

θk =
λαk

1 + αkλ
, τk =

δk
λ
.

The above max and min problems can be explicitly solved, yielding the following algorithm.

Algorithm. PDHG for TV deblurring.

pk+1 = ΠX

(
pk + τkλDuk

)
,(3.15a)

uk+1 =
(
(1− θk)I + θkK

TK
)−1

(
(1− θk)u

k + θk

(
KT f − 1

λ
DT pk+1

))
.(3.15b)

Here, ΠX is the orthogonal projection onto X defined by

(3.16) ΠX(q) = argmin
p∈X

‖p− q‖22 =
q

Emax
(√

ET (q2), 1
) ,

where the division and max are understood in a componentwise sense. With qν defined
analogously to wν in (3.6), we could alternatively write (ΠX(q))η =

qη
max(‖qν‖2,1) , where ν is

the node at which edge η is used in a forward difference. For example, ΠX(Du) can be thought
of as a discretization of { ∇u

|∇u| if |∇u| > 1,

∇u otherwise.

In the denoising case where K = I, the pk+1 update remains the same and the uk+1 simplifies
to

uk+1 = (1− θk)u
k + θk

(
f − 1

λ
DT pk+1

)
.

4. Interpretation of PDHG as projected averaged gradient method for TV denoising.
Even though we know of convergence results (Theorems 2.3 and 2.4) for the modified PDHG
algorithms PDHGMu (2.18) and PDHGMp, it would be nice to show convergence of the orig-
inal PDHG method (2.10) because PDHG still has some numerical advantages. Empirically,
the stability requirements for the step size parameters are less restrictive for PDHG, so there
is more freedom to tune the parameters to improve the rate of convergence. In this section, we
restrict attention to PDHG applied to TV denoising and prove a convergence result assuming
certain conditions on the parameters.

4.1. Projected gradient special case. Recall that in the case of TV denoising, problem
(P) becomes

(4.1) min
u∈Rm

‖u‖TV +
λ

2
‖u− f‖22,
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with J = ‖ · ‖E , A = D, and H(u) = λ
2‖u− f‖22, in which case PFBS on (D) simplifies to

pk+1 = arg min
p∈Rn

J∗(p) +
1

2δk
‖p − (pk + δkD∇H∗(−DT pk))‖22.

Since J∗ is the indicator function for the unit ball, denoted as X (3.9), in the dual norm
‖ · ‖E∗ , this is exactly an orthogonal projection onto the convex set X (3.16). Letting τk = δk

λ
and also using that

H∗(−DT p) =
1

2λ
‖λf −DT p‖22 −

λ

2
‖f‖22,

the algorithm simplifies to the following.

Algorithm. Gradient projection for TV denoising.

(4.2) pk+1 = ΠX

(
pk − τkD(DT pk − λf)

)
.

Many variations of gradient projection applied to TV denoising are discussed in [59]. As
already noted in [58], algorithm PDGH applied to TV denoising reduces to projected gradient
descent when θk = 1. Equivalence to (3.15) in the θk = 1 case can be seen by plugging
uk = (f − 1

λD
T pk) into the update for pk+1. This can be interpreted as projected gradient

descent applied to

(4.3) min
p∈X

G(p) :=
1

2
‖DT p− λf‖22,

an equivalent form of the dual problem.
Theorem 4.1. Fix p0 ∈ R

n. Let pk be defined by (4.2) with 0 < inf τk ≤ sup τk < 1
4 , and

define uk+1 = f − DT pk

λ . Then {pk} converges to a solution of (4.3), and {uk} converges to
a solution of (4.1).

Proof. Since ∇G is Lipschitz continuous with Lipschitz constant ‖DDT ‖ and uk+1 =

∇H∗(−DT pk) = f − DT pk

λ , then by Theorem 2.2 the result follows if 0 < inf τk ≤ sup τk <
2

‖DDT ‖ . The bound ‖DDT ‖ ≤ 8 follows from the Gerschgorin circle theorem.

4.1.1. AMA equivalence and soft thresholding interpretation. By the general equiva-
lence between PFBS and AMA, (4.2) is equivalent to the following algorithm.

Algorithm. AMA for TV denoising.

uk+1 = f − DT pk

λ
,(4.4a)

wk+1 = S̃ 1
δk

(
Duk+1 +

1

δk
pk
)
,(4.4b)

pk+1 = pk + δk(Duk+1 − wk+1).(4.4c)
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Here S̃ denotes the soft thresholding operator for ‖ · ‖E defined by

S̃α(f) = argmin
z

‖z‖E +
1

2α
‖z − f‖22.

This soft thresholding operator is closely related to the projection ΠX defined by (3.16). A
direct application of Moreau’s decomposition (Theorem 2.1) shows that S̃α(f) can be defined
by

(4.5) S̃α(f) = f − αΠX

(
f

α

)
= f −ΠαX(f).

Similar projections can be derived for other norms.
In fact, it is not necessary to assume that J is a norm to obtain similar projection inter-

pretations. It is enough that J be a convex 1-homogeneous function, as Chambolle points out
in [10], when deriving a projection formula for the solution of the TV denoising problem. By
letting z = DT p, the dual problem (4.3) is solved by the projection

z = Π{z:z=DT p,‖p‖E∗≤1}(λf),

and the solution to the TV denoising problem is given by

u∗ = f − 1

λ
Π{z:z=DTp,‖p‖E∗≤1}(λf).

However, the projection is nontrivial to compute.

4.2. Projected averaged gradient. In the θ 
= 1 case, still for TV denoising, the projected
gradient descent interpretation of PDHG extends to an interpretation as a projected averaged
gradient descent algorithm. For the sake of simplicity, consider parameters τ and θ that are
independent of k. Then plugging uk+1 into the update for p yields

(4.6) pk+1 = ΠX

(
pk − τdkθ

)
,

where

dkθ = θ

k∑
i=1

(1− θ)k−i∇G(pi) + (1− θ)k∇G(p0)

is a convex combination of gradients of G at the previous iterates pi. Note that dkθ is not
necessarily a descent direction.

This kind of averaging of previous iterates suggests a connection to Nesterov’s method [36].
Several recent papers study variants of his method and their applications. Weiss, Aubert, and
Blanc-Féraud in [52] apply a variant of Nesterov’s method [37] to smoothed TV functionals.
Beck and Teboulle in [1] and Becker, Bobin, and Candès in [3] also study variants of Nesterov’s
method that apply to l1 and TV minimization problems. Tseng gives a unified treatment
of accelerated proximal gradient methods like Nesterov’s in [48]. However, despite some
tantalizing similarities to PDHG, it appears that none is equivalent.

In the following section, the connection to a projected average gradient method on the
dual is made for the more general case when the parameters are allowed to depend on k.
Convergence results are presented for some special cases.
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4.2.1. Convergence. For a minimizer p, the optimality condition for the dual problem
(4.3) is

(4.7) p = ΠX(p − τ∇G(p)) ∀τ ≥ 0

or, equivalently,
〈∇G(p), p − p〉 ≥ 0 ∀p ∈ X.

In the following, we denote G = minp∈X G(p) and let X∗ denote the set of minimizers. As
mentioned above, the PDHG algorithm (3.15) for TV denoising is related to a projected
gradient method on the dual variable p. When τ and θ are allowed to depend on k, the
algorithm can be written as

(4.8) pk+1 = ΠX

(
pk − τkd

k
)
,

where

dk =

k∑
i=0

sik∇G(pi), sik = θi−1

k−1∏
j=i

(1− θj).

Note that

k∑
i=0

sik = 1, sik = (1− θk−1)s
i
k−1 ∀k ≥ 0, i ≤ k, and(4.9)

dk = (1− θk−1)d
k−1 + θk−1∇G(pk).(4.10)

As above, the direction dk is a linear (convex) combination of gradients of all previous iterates.
We will show that dk is an ε-gradient at pk. This means that dk is an element of the ε-
differential (ε-subdifferential for nonsmooth functionals), ∂εG(p), of G at pk defined by

G(q) ≥ G(pk) + 〈dk, q − pk〉 − ε ∀q ∈ X.

When ε = 0 this is the definition of dk being a subgradient (in this case, the gradient) of G
at pk.

For p and q, the Bregman distance based on G between p and q is defined as

(4.11) D(p, q) = G(p)−G(q) − 〈∇G(q), p − q〉 ∀p, q ∈ X.

From (4.3), the Bregman distance (4.11) reduces to

D(p, q) =
1

2
‖DT (p− q)‖22 ≤

L

2
‖p− q‖2,

where L is the Lipschitz constant of ∇G.
Lemma 4.2. For any q ∈ X, we have

G(q) −G(pk)− 〈dk, q − pk〉 =
k∑

i=0

sik(D(q, pi)−D(pk, pi)).
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Proof. For any q ∈ X,

G(q)−G(pk)− 〈dk, q − pk〉 = G(q) −G(pk)−
〈

k∑
i=0

sik∇G(pi), q − pk

〉

=

k∑
i=0

sikG(q)−
k∑

i=0

sikG(pi)−
k∑

i=0

sik〈∇G(pi), q − pi〉

+

k∑
i=0

sik(G(pi)−G(pk)− 〈∇G(pi), pi − pk〉)

=
k∑

i=0

sik(D(q, pi)−D(pk, pi)).

Lemma 4.3. The direction dk is an εk-gradient of p
k, where εk =

∑k
i=0 s

i
kD(pk, pi).

Proof. By Lemma 4.2,

G(q)−G(pk)− 〈dk, q − pk〉 ≥ −
k∑

i=0

sikD(pk, pi) ∀q ∈ X.

By the definition of ε-gradient, we obtain that dk is an εk-gradient of G at pk, where

εk =
k∑

i=0

sikD(pk, pi).

Lemma 4.4. If θk → 1, then εk → 0.
Proof. Let hk = G(pk)−G(pk−1)− 〈dk−1, pk − pk−1〉; then using the Lipschitz continuity

of ∇G and the boundedness of dk, we obtain

|hk| = |D(pk, pk−1) + 〈(∇G(pk−1)− dk−1, pk − pk−1)〉| ≤ L

2
‖pk − pk−1‖22 + C1‖pk − pk−1‖2,

where L is the Lipschitz constant of ∇G, and C1 is some positive constant. Since εk =∑k
i=0 s

i
kD(pk, pi), pk is bounded, and

∑
i=0 s

i
k = 1, it follows that εk is bounded for any k.

Meanwhile, by replacing q with pk and pk with pk−1 in Lemma 4.2, we obtain hk =∑k−1
i=0 sik−1(D(pk, pi)−D(pk−1, pi)). From

sik = (1− θk−1)s
i
k−1 ∀1 ≤ i ≤ k − 1,

we get

εk = (1− θk−1)

k−1∑
i=0

sik−1D(pk, pi)

= (1− θk−1)εk−1 + (1− θk−1)

k−1∑
i=0

sik−1(D(pk, pi)−D(pk−1, pi))

= (1− θk−1)(εk−1 + hk).

By the boundedness of hk and εk, we get immediately that if θk−1 → 1, then εk → 0.



1034 ERNIE ESSER, XIAOQUN ZHANG, AND TONY F. CHAN

Since εk → 0, the convergence of pk follows directly from classical [47, 33] ε-gradient
methods. Possible choices of the step size τk are given in the following theorem.

Theorem 4.5 (see [47, 33]; convergence to the optimal set using divergent series τk). Let θk
→ 1, and let τk satisfy τk > 0, limk→∞ τk = 0, and

∑∞
k=1 τk = ∞. Then the sequence pk

generated by (4.8) satisfies G(pk) → G and dist{pk,X∗} → 0.
Since we require θk → 1, the algorithm is equivalent to projected gradient descent in the

limit. However, it is well known that a divergent step size for τk is slow, and we can expect
a better convergence rate without letting τk go to 0. In the following, we prove a different
convergence result that does not require τk → 0, but still requires θk → 1.

Lemma 4.6. For pk defined by (4.8), we have 〈dk, pk+1 − pk〉 ≤ − 1
τk
‖pk+1 − pk‖22.

Proof. Since pk+1 is the projection of pk − τkd
k onto X, it follows that

〈pk − τkd
k − pk+1, p− pk+1〉 ≤ 0 ∀p ∈ X.

Replacing p with pk, we thus get

(4.12) 〈dk, pk+1 − pk〉 ≤ − 1

τk
‖pk+1 − pk‖22.

Lemma 4.7. Let pk be generated by the method (4.8); then

G(pk+1)−G(pk)− β2
k

αk
‖pk − pk−1‖22 ≤ −(αk + βk)

2

αk

∥∥∥∥pk −
(

αk

αk + βk
pk+1 +

βk
αk + βk

pk−1

)∥∥∥∥
2

2

,

where

(4.13) αk =
1

τkθk−1
− L

2
, βk =

1− θk−1

2θk−1τk−1
.

Proof. By using the Taylor expansion and the Lipschitz continuity of ∇G (or directly from
the fact that G is a quadratic function), we have

G(pk+1)−G(pk) ≤ 〈∇G(pk), pk+1 − pk〉+ L

2
‖pk+1 − pk‖22.

Since by (4.10), ∇G(pk) = 1
θk−1

(dk − (1− θk−1)d
k−1), using (4.12) we have

G(pk+1)−G(pk) ≤ 1

θk−1
〈dk, pk+1 − pk〉 − 1− θk−1

θk−1
〈dk−1, pk+1 − pk〉+ L

2
‖pk+1 − pk‖22

=

(
L

2
− 1

τkθk−1

)
‖pk+1 − pk‖22 −

1− θk−1

θk−1
〈dk−1, pk+1 − pk〉.

On the other hand, since pk is the projection of pk−1 − τk−1d
k−1, we get

〈pk−1 − τk−1d
k−1 − pk, p − pk〉 ≤ 0 ∀p ∈ X.

Replacing p with pk+1, we thus get

〈dk−1, pk+1 − pk〉 ≥ 1

τk−1
〈pk−1 − pk, pk+1 − pk〉.
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This yields

G(pk+1)−G(pk) ≤ −αk‖pk+1 − pk‖2 − 2βk〈pk−1 − pk, pk+1 − pk〉

= −(αk + βk)
2

αk

∥∥∥∥pk −
(

αk

αk + βk
pk+1 +

βk
αk + βk

pk−1

)∥∥∥∥
2

+
β2
k

αk
‖pk − pk−1‖2,

where αk and βk are defined as in (4.13).
Theorem 4.8. If αk and βk defined as in (4.13) are such that αk > 0, βk ≥ 0 and

(4.14)

∞∑
k=0

(αk + βk)
2

αk
= ∞,

∞∑
k=0

β2
k

αk
< ∞, lim

k→∞
βk
αk

= 0,

then every limit point pair (p∞, d∞) of a subsequence of (pk, dk) is such that p∞ is a minimizer
of (4.3) and d∞ = ∇G(p∞).

Proof. The proof is adapted from [4, Propositions 2.3.1 and 2.3.2] and Lemma 4.7. Since
pk and dk are bounded, the subsequence (pk, dk) has a convergent subsequence. Let (p∞, d∞)
be a limit point of the pair (pk, dk), and let (pkm, dkm) be a subsequence that converges to
(p∞, d∞). For km > n0, Lemma 4.7 implies that

G(pkm)−G(pn0) ≤ −
km∑

k=n0

(αk + βk)
2

αk

∥∥∥∥pk −
(

αk

αk + βk
pk+1 +

βk
αk + βk

pk−1

)∥∥∥∥
2

2

+

km∑
k=n0

β2
k

αk
‖pk−1 − pk‖22.

By the boundedness of the constraint set X, the conditions (4.14) for αk and βk, and the fact
that G(p) is bounded from below, we conclude that∥∥∥∥pk −

(
αk

αk + βk
pk+1 +

βk
αk + βk

pk−1

)∥∥∥∥
2

→ 0.

Given ε > 0, we can choose m large enough such that ‖pkm−p∞‖2 ≤ ε
3 , ‖pk−( αk

αk+βk
pk+1+

βk
αk+βk

pk−1)‖2 ≤ ε
3 for all k ≥ km, and

βkm
αkm+βkm

‖(pkm−1 − p∞)‖2 ≤ ε
3 . This third requirement

is possible because limk→∞ βk
αk

= 0. Then∥∥∥∥(pkm − p∞)− αkm

αkm + βkm
(pkm+1 − p∞)− βkm

αkm + βkm
(pkm−1 − p∞)

∥∥∥∥
2

≤ ε

3

implies that ∥∥∥∥ αkm

αkm + βkm
(pkm+1 − p∞) +

βkm
αkm + βkm

(pkm−1 − p∞)

∥∥∥∥
2

≤ 2

3
ε.

Since
βkm

αkm+βkm
‖(pkm−1 − p∞)‖2 ≤ ε

3 , we have

‖pkm+1 − p∞‖2 ≤ αkm + βkm
αkm

ε.
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Note that km+1 is not necessarily an index for the subsequence {pkm}. Since limk
αk+βk

αk
= 1,

we have ‖pkm+1 − p∞‖2 → 0 when m → ∞. According to (4.8), the limit point (p∞, d∞) is
therefore such that

(4.15) p∞ = ΠX(p∞ − τd∞)

for τ > 0.

Now it remains to show that the corresponding subsequence dkm = (1 − θkm−1)d
km−1 +

θkm−1∇G(pkm) converges to∇G(p∞). By the same technique, and the fact that θk → 1, we can
get ‖∇G(pkm) − d∞‖ ≤ ε. Thus ∇G(pkm) → d∞. On the other hand, ∇G(pkm) → ∇G(p∞).
Thus d∞ = ∇G(p∞). Combining this with (4.15) and the optimal condition (4.7), we conclude
that p∞ is a minimizer.

In summary, the overall conditions on θk and τk are

• θk → 1, τk > 0,
• 0 < τkθk < 2

L ,

• ∑∞
k=0

(αk+βk)
2

αk
= ∞,

• limk→∞ βk
αk

= 0,

• ∑∞
k=0

β2
k

αk
< ∞,

where

(4.16) αk =
1

τkθk−1
− L

2
, βk =

1− θk−1

2θk−1τk−1
.

Finally, we have θk → 1, and for τk the classical conditions for the projected gradient
descent algorithm (0 < τk < 2

L) and divergent step size (limk τk → 0,
∑

k τk → ∞) are special
cases of the above conditions. The algorithm converges empirically for a much wider range of
parameters. For example, convergence with 0 < θk ≤ c < 1 and even θk → 0 is numerically
demonstrated in [58], but a theoretical proof is still an open problem.

5. Extensions to constrained minimization. The extension of PDHG to constrained min-
imization problems is discussed in [58] and applied, for example, to TV denoising with a con-
straint of the form ‖u− f‖2 ≤ mσ2 with σ2 an estimate of the variance of the Gaussian noise.
Such extensions work equally well with the modified PGHD algorithms. In the context of our
general primal problem (P), if u is constrained to be in a convex set S, then this still fits in
the framework of (P) since the indicator function for S can be incorporated into the definition
of H(u).

5.1. General convex constraint. Consider the case when H(u) is exactly the indicator
function gS(u) for a convex set S ⊂ R

m, which would mean

H(u) = gS(u) :=

{
0 if u ∈ S,

∞ otherwise.

Applying PDHG or the modified versions results in a primal step that can be interpreted as an
orthogonal projection onto S. For example, when applying PDHGMu, the pk+1 step (2.18a)
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remains the same, and the uk+1 step (2.18b) becomes

uk+1 = ΠS

(
uk − αkA

T pk+1
)
.

For this algorithm to be practical, the projection ΠS must be straightforward to compute.
Suppose the constraint on u is of the form ‖Ku−f‖2 ≤ ε for some matrix K and ε > 0. Then

ΠS(z) = (I −K†K)z +K†
{
Kz if ‖Kz − f‖2 ≤ ε,

f + r
(

Kz−KK†f
‖Kz−KK†f‖2

)
otherwise,

where

r =
√

ε2 − ‖(I −KK†)f‖22
and K† denotes the pseudoinverse of K. Note that (I − K†K) represents the orthogonal
projection onto ker(K). A special case where this projection is easily computed is when
KKT = I and K† = KT . In this case, the projection onto S simplifies to

ΠS(z) = (I −KTK)z +KT

{
Kz if ‖Kz − f‖2 ≤ ε,

f + ε
(

Kz−f
‖Kz−f‖2

)
otherwise.

5.2. Constrained TV deblurring. In the notation of problem (P), the unconstrained TV
deblurring problem (3.1) corresponds to J = ‖ · ‖E , A = D, and H(u) = λ

2‖Ku − f‖22. A
constrained version of this problem,

(5.1) min
‖Ku−f‖2≤ε

‖u‖TV ,

can be rewritten as

min
u

‖Du‖E + gT (Ku),

where gT is the indicator function for T = {z : ‖z − f‖2 ≤ ε} defined by

(5.2) gT (z) =

{
0 if ‖z − f‖2 ≤ ε,

∞ otherwise.

With the aim of eventually ending up with an explicit algorithm for this problem, we use some
operator splitting ideas, letting

H(u) = 0 and J(Au) = J1(Du) + J2(Ku),

where A =
[
D
K

]
, J1(w) = ‖w‖E , and J2(z) = gT (z). Letting p = [ p1p2 ], it follows that

J∗(p) = J∗
1 (p1) + J∗

2 (p2). Applying PDHG (2.10) with the uk+1 step written first, we obtain
the following algorithm.
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Algorithm. PDHG for constrained TV deblurring.

uk+1 = uk − αk(D
T pk1 +KT pk2),(5.3a)

pk+1
1 = ΠX

(
pk1 + δkDuk+1

)
,(5.3b)

pk+1
2 = pk2 + δkKuk+1 − δkΠT

(
pk2
δk

+Kuk+1

)
.(5.3c)

Here, ΠT is defined by

(5.4) ΠT (z) = f +
z − f

max
(‖z−f‖2

ε , 1
) .

In the constant step size case, to get the PDHGMp version of this algorithm, we would replace
DTpk1 +KT pk2 with DT (2pk1 − pk−1

1 ) +KT (2pk2 − pk−1
2 ).

5.3. Constrained l1 minimization. Sparse approximation problems that seek to find a
sparse solution satisfying some data constraints sometimes use the type of constraint described
in the previous section [9]. A simple example of such a problem is

(5.5) min
u

‖u‖1 such that ‖Ku− f‖2 ≤ ε,

where u is what we expect to be sparse, K = RΓΨT , R is a row selector, Γ is orthogonal, and
Ψ is a tight frame with ΨTΨ = I. RΓ can be thought of as selecting some coefficients in an
orthonormal basis. We will compare two different applications of PDHGMu, one that stays
on the constraint set and one that does not.

Letting J = ‖ ·‖1, A = I, S = {u : ‖Ku−f‖2 ≤ ε}, and H(u) equal the indicator function
gS(u) for S, application of PDHGMu yields the following method in which uk satisfies the
constraint at each iteration.

Algorithm. PDHGMu for constrained l1 minimization (stays in constraint set).

pk+1 = Π{p:‖p‖∞≤1}

(
pk + δk

((
1 +

αk

αk−1

)
uk − αk

αk−1
uk−1

))
,(5.6a)

uk+1 = ΠS

(
uk − αkp

k+1
)
.(5.6b)

Here

Π{p:‖p‖∞≤1}(p) =
p

max(|p|, 1) ,

and

ΠS(u) = (I −KTK)u+KT

(
f +

Ku− f

max
(‖Ku−f‖2

ε , 1
)
)
.
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As before, Theorem 2.4 applies when αk = α > 0, δk = δ > 0, and δ < 1
α . Also, since

A = I, the case when δ = 1
α is exactly ADMM applied to (SPD), which is equivalent to

Douglas–Rachford splitting on (P).
In general, ΠS may be difficult to compute. It is possible to apply PDHGMu to (5.5) in a

way that simplifies this projection but no longer stays in the constraint set at each iteration.
The strategy is essentially to reverse the roles of J and H in the previous example, letting
J(u) = gT (Ku) and H(u) = ‖u‖1 with gT defined by (5.2). The following algorithm results.

Algorithm. PDHGMu for constrained l1 minimization (does not stay in constraint set).

vk+1 = pk + δkK

((
1 +

αk

αk−1

)
uk − αk

αk−1
uk−1

)
,(5.7a)

pk+1 = vk+1 − δkΠT

(
vk+1

δk

)
,(5.7b)

wk+1 = uk − αkK
T pk+1,(5.7c)

uk+1 = wk+1 − αkΠ{p:‖p‖∞≤1}

(
wk+1

αk

)
.(5.7d)

Here, vk+1 and wk+1 are just place holders, and ΠT is defined by (5.4).
This variant of PDHGMu is still an application of the split inexact Uzawa method (2.16).

Also, since ‖K‖ ≤ 1, the conditions for convergence are the same as for (5.6). Moreover, since
KKT = I, if δ = 1

α , then this method can again be interpreted as ADMM applied to the split
dual problem.

Note that ΠT is much simpler to compute than ΠS . The benefit of simplifying the pro-
jection step is important for problems where K† is not practical to deal with numerically.

6. Numerical experiments. We perform three numerical experiments to show that the
modified and unmodified PDHG algorithms have similar performance and applications. The
first is a comparison between PDHG, PDHGMu, and ADMM applied to TV denoising. The
second compares the application of PDHG and PDHGMp to a constrained TV deblurring
problem. The third experiment applies PDHGMu in two different ways to a constrained l1
minimization problem.

6.1. PDHGM, PDHG, and ADMM for TV denoising. Here, we closely follow the numer-
ical example presented in Table 4 of [58], which compared PDHG to Chambolle’s method [10]
and CGM [13] for TV denoising. We use the same 256× 256 cameraman image with intensi-
ties in [0, 255]. The image is corrupted with zero mean white Gaussian noise having standard
deviation 20. We also use the same parameter λ = .053. Both adaptive and fixed step size
strategies are compared. In all examples, we initialize u0 = f and p0 = 0. Figure 2 shows the
clean and noisy images along with a benchmark solution for the denoised image.

Recall that the PDHG algorithm for the TV denoising problem (4.1) is given by (3.15)
with K = I. The adaptive strategy used for PDHG is the same one proposed in [58], where

(6.1) τk = .2 + .008k, θk =
.5− 5

15+k

τk
.
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Figure 2. Original, noisy, and benchmark denoised cameraman images.

These can be related to the step sizes δk and αk in (2.10) by

δk = λτk, αk =
θk

λ(1− θk)
.

These time steps do not satisfy the requirements of Theorem 4.8, which requires θk → 1.
However, we find that the adaptive PDHG strategy (6.1), for which θk → 0, is much better
numerically for TV denoising.

When applying the PDHGMu algorithm to TV denoising, the stability requirement means
that using the same adaptive time steps of (6.1) can be unstable. Instead, the adaptive strategy
we use for PDHGMu is

(6.2) αk =
1

λ(1 + .5k)
, δk =

1

8.01αk
.

Unfortunately, no adaptive strategy for PDHGMu can satisfy the requirements of Theorem 2.3,
which assumes fixed time steps. However, the rate of convergence of the adaptive PDHGMu
strategy for TV denoising is empirically better than the fixed parameter strategies.

We also perform some experiments with fixed α and δ. A comparison is made to gradient
projection (4.2). We also compare to FISTA [1] applied to the dual of the TV denoising
problem (4.3). As discussed in [2], where this application is referred to as FGP, it can be
thought of as an acceleration of gradient projection. Much like the modification to PDHG, it
replaces pk in (4.2) with a combination of the previous iterates, namely,

pk +
tk − 1

tk+1
(pk − pk−1),

where

tk+1 =
1 +

√
1 + 4t2k

2
.

An additional comparison is made to ADMM as applied to (SPP). This algorithm alternates
soft thresholding, solving a Poisson equation, and updating the Lagrange multiplier. This
is equivalent to the split Bregman algorithm [29], which was compared to PDHG elsewhere
in [58]. However, by working with the ADMM form of the algorithm, it is easier to use
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Table 1
Iterations required for TV denoising.

Algorithm tol = 10−2 tol = 10−4 tol = 10−6

PDHG (adaptive) 14 70 310

PDHGMu (adaptive) 19 92 365

PDHG α = 5, δ = .025 31 404 8209

PDHG α = 1, δ = .125 51 173 1732

PDHG α = .2, δ = .624 167 383 899

PDHGMu α = 5, δ = .025 21 394 8041

PDHGMu α = 1, δ = .125 38 123 1768

PDHGMu α = .2, δ = .624 162 355 627

PDHG α = 5, δ = .1 22 108 2121

PDHG α = 1, δ = .5 39 123 430

PDHG α = .2, δ = 2.5 164 363 742

PDHGMu α = 5, δ = .1 unstable

PDHGMu α = 1, δ = .5 unstable

PDHGMu α = .2, δ = 2.5 unstable

Proj. Grad. δ = .0132 46 721 14996

FGP δ = .0066 24 179 1264

ADMM δ = .025 17 388 7951

ADMM δ = .125 22 100 1804

ADMM δ = .624 97 270 569

the duality gap as a stopping condition since u and p have the same interpretations in both
algorithms. As in [58] we use the relative duality gap R for the stopping condition defined by

R(u, p) =
FP (u)− FD(p)

FD(p)
=

(‖u‖TV + λ
2‖u− f‖22

)− (λ2‖f‖22 − 1
2λ‖DT p− λf‖22

)
λ
2 ‖f‖22 − 1

2λ‖DT p− λf‖22
,

which is the duality gap divided by the dual functional. The duality gap is defined to be the
difference between the primal and dual functionals. This quantity is always nonnegative and
is zero if and only if (u, p) is a saddle point of (3.10) with K = I. Table 1 shows the number of
iterations required for the relative duality gap to fall below tolerances of 10−2, 10−4, and 10−6.
Note that the complexity of the PDHG and PDHGMu iterations scale like O(m), whereas the
ADMM iterations scale like O(m logm). Results for PDHGMp were identical to those for
PDHGMu and are therefore not included in the table. All of the examples are for the same
256×256 cameraman image. As the problem size increases, more iterations would be required
for all of the tabulated methods.

From Table 1, we see that PDHG and PDHGMu both benefit from adaptive step size
schemes. The adaptive versions of these algorithms are compared in Figure 4(a), which plots
the relative l2 error to the benchmark solution versus the number of iterations. PDHG with the
adaptive step sizes outperforms all of the other numerical experiments, but for identical fixed
parameters, PDHGMu performs slightly better than PDHG. However, for fixed α the stability
requirement, δ < 1

α‖D‖2 , for PDHGMu places an upper bound on δ which is empirically
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Figure 3. Original image, blurry/noisy image, and image recovered from 300 PDHGMp iterations.

about four times less than for PDHG. Table 1 shows that for fixed α, PDHG with larger δ
outperforms PDHGMu. The stability restriction for PDHGMu is also why the same adaptive
time stepping scheme used for PDHG cannot be used for PDHGMu. We also note that fixed
parameter versions of PDHG and PDHGMu are competitive with FGP.

Table 1 also demonstrates that larger α is more effective when the relative duality gap
is large, and smaller α is better when this duality gap is small. Since PDHG for large α
is similar to projected gradient descent, roughly speaking this means the adaptive PDHG
algorithm starts out closer to PFBS on (D), but gradually becomes more like PFBS on (P).

All of the methods in Table 1 are at best linearly convergent, so superlinearly conver-
gent methods like CGM and semismooth Newton will eventually outperform them when high
accuracy is desired.

6.2. PDHGMp for constrained TV deblurring. PDHGMp and PDHG also perform simi-
larly for constrained TV deblurring (5.1). For this example we use the same cameraman image
from the previous section and let K be a convolution operator corresponding to a normalized
Gaussian blur with a standard deviation of 3 in a 17× 17 window. Letting h denote the clean
image, the given data f is taken to be f = Kh + η, where η is zero mean Gaussian noise
with standard deviation 1. We thus set ε = 256. For the numerical experiments we used the
fixed parameter versions of PDHG and PDHGMp with α = .33 and δ = .33. The images
h and f and the recovered image from 300 iterations of PDHGMp are shown in Figure 3.
Figure 4(b) compares the relative l2 error to the benchmark solution as a function of the num-
ber of iterations for PDHG and PDHGMp. Empirically, with the same fixed parameters, the
performance of these two algorithms is nearly identical, and the curves are indistinguishable
in Figure 4(b). Although many iterations are required for a high accuracy solution, Figure 3
shows the result can be visually satisfactory after just a few hundred iterations.

6.3. PDHGMu for constrained l1 minimization. Here we compare two applications of
PDHGMu, (5.6) and (5.7), applied to (5.5) with ε = .01. Let K = RΓΨT , where R is a row
selector, Γ is an orthogonal two-dimensional (2D) discrete cosine transform (DCT), and Ψ is
a redundant translation invariant 2D Haar wavelet transform normalized so that ΨTΨ = I. It
follows that KKT = I and K† = KT . For a simple example, let h be a 32× 32 image, shown
in Figure 5, that is a linear combination of just four Haar wavelets. Let R select 64 of the
lowest frequency DCT measurements and define f = RΓh. The constrained l1 minimization
model aims to recover a sparse signal in the wavelet domain that is consistent with these
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Figure 4. l2 error versus iterations for PDHG and PDHGMp.

Figure 5. Original, damaged, and benchmark recovered images.

partial DCT measurements [8]. We have kept the example simple so as to focus on the two
possible ways to handle the constraint using PDHGMu.

For the numerical experiments, we let α = .99 and δ = .99. We also scale ‖u‖1 by μ = 10 to
accelerate the rate of convergence. For the initialization, let p0 = 0 and let u0 = Ψz0, where
z0 = ΓTRTRΓh is the backprojection obtained by taking the inverse DCT of f with the
missing measurements replaced by 0. Let u∗ denote the benchmark solution. The recovered
z∗ = ΨTu∗ is nearly equal to h, but due to the nonuniqueness of minimizers, u∗ has more
nonzero wavelet coefficients than the originally selected four. Figure 5 shows h, z0, and z∗.

Both versions of PDHGMu applied to this problem have simple iterations that scale like
O(m), but they behave somewhat differently. The first version (5.6) by definition satisfies the
constraint at each iteration. However, these projections onto the constraint set destroy the
sparsity of the approximate solution so it can be a little slower to recover a sparse solution.
The other version (5.7), on the other hand, more quickly finds a sparse approximate solution
but can take a long time to satisfy the constraint to a high precision.

To compare the two approaches, we compare plots of how the constraint and l1 norm vary
with iterations. Figure 6(a) plots |‖Kuk − f‖2 − ε| against the iterations k for (5.7). Note
that this is always zero for (5.6), which stays on the constraint set. Figure 6(b) compares

the differences |‖uk‖1−‖u∗‖1|
‖u∗‖1 for both algorithms on a semilog plot. The empirical rate of
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Figure 6. Comparison of two applications of PDHGMu to constrained l1 minimization.

convergence to ‖u∗‖1 was similar for both algorithms despite the many oscillations. The
second version of PDHGMu (5.7) was a little faster to recover a sparse solution, but (5.6)
had the advantage of staying on the constraint set. For different applications with more
complicated K, the simpler projection step in (5.7) would be an advantage of that approach.
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[47] N. Z. Shor, K. C. Kiwiel, and A. Ruszcyǹski, Minimization Methods for Nondifferentiable Functions,
Springer-Verlag, Berlin, 1985.

[48] P. Tseng, On Accelerated Proximal Gradient Methods for Convex-Concave Optimization, preprint, 2008.
[49] P. Tseng, Alternating projection-proximal methods for convex programming and variational inequalities,

SIAM J. Optim., 7 (1997), pp. 951–965.
[50] P. Tseng, Applications of a splitting algorithm to decomposition in convex programming and variational

inequalities, SIAM J. Control Optim., 29 (1991), pp. 119–138.
[51] Y. Wang, J. Yang, W. Yin, and Y. Zhang, A new alternating minimization algorithm for total

variation image reconstruction, SIAM J. Imaging Sci., 1 (2008), pp. 248–272.
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