A Survey of Kernels for Structured Data

Thomas Gartner
Fraunhofer Institut Autonome Intelligente Systeme, Germany;
Department of Computer Science, University of Bristol, United Kingdom; and
Department of Computer Science lll, University of Bonn, Germany

thomas.gaertner@ais.fraunhofer.de

ABSTRACT

Kernel methods in general and support vector machines in
particular have been successful in various learning tasks on
data represented in a single table. Much ‘real-world’ data,
however, is structured — it has no natural representation in
a single table. Usually, to apply kernel methods to ‘real-
world’ data, extensive pre-processing is performed to embed
the data into a real vector space and thus in a single table.
This survey describes several approaches of defining positive
definite kernels on structured instances directly.

Keywords

Kernel methods, structured data, multi-relational data min-
ing, inductive logic programming

1. INTRODUCTION

Most ‘real-world’ data has no natural representation as a
single table, yet most data mining research has so far concen-
trated on discovering knowledge from single tables. In order
to apply ‘traditional’ data mining methods to structured
data, extensive pre-processing has to be performed. Re-
search in inductive logic programming and multi-relational
data mining [8] aims to reduce these pre-processing efforts
by considering learning from multi-relational data descrip-
tions directly. Some algorithms developed in that field are
upgrades of algorithms, originally developed only with single
tables data in mind. Among the so far upgraded algorithms
are popular data mining methods such as decision trees, rule
learners, and distance-based algorithms.

Support vector machines [3; 41] are among the most success-
ful recent developments within the machine learning and
data mining communities. Along with some other learn-
ing algorithms like Gaussian processes and kernel principal
component analysis, they form the class of kernel methods
[32; 37]. The computational attractiveness of kernel meth-
ods comes from the fact that they can be applied in high
dimensional feature spaces without suffering the high cost
of explicitly computing the mapped data. The kernel trick
is to define a positive definite kernel on any set. For such
functions it is know that there exists an embedding of the
set in a linear space such that the kernel on the elements of
the set corresponds to the inner product in this space.
While the inductive logic programming community has tra-
ditionally used logic programs to represent structured data,

49

the scope has now extended and also includes other knowl-
edge representation languages. Development of kernels for
structured data has mostly been motivated and guided by
‘real-world’ problems. Although the structure of these prob-
lems is often such that they do not permit a natural repre-
sentation in a single table, the full power of logic programs
is hardly ever needed. This is one reason, kernel design
has concentrated on different and sometimes less powerful
knowledge representations.

This paper is not intended as an introduction to kernel-based
learning algorithms, for such an introduction the reader is
referred to one of the excellent books [5; 37] or tutorials [2;
32] on kernel methods ([2] is available online). Instead, this
paper intends to give an introduction to kernel functions
defined on structured data. For that, we assume some basic
familiarity with linear algebra.

In this paper we distinguish kernels according to whether
they are defined on the structure of the instances (syntax-
driven kernels), or on the structure of the instance space
{(model-driven kernels). Furthermore, we distinguish accord-
ing to the power of the knowledge representation used. The
outline of the paper is as follows: Section 2 introduces kernel
functions and characterizes valid and good kernels. It also
presents a classification scheme for kernel functions. Model-
driven kernels are then described in section 3. After that
syntax-driven kernels are described in section 4. Finally,
section 5 concludes .

2. KERNEL FUNCTIONS

Two components of kernel methods have to be distinguished:
the kernel machine and the kernel function. While the ker-
nel machine encapsulates the learning task and the way in
which a solution is looked for, the kernel function encapsu-
lates the hypothesis language, i.e., how the set of possible
solutions is made up. Different kernel functions implement
different hypothesis spaces or even different knowledge rep-
resentations.

2.1 Kernels on Vectors

Before we give the definition of positive definite kernels, the
traditionally used kernels (on vector spaces) are briefly re-
viewed in this section. Let z,z’ € R™ and let {-,-) denote
the scalar product in R™. Apart from the linear kernel

k(z,z') = <x, z'}
and the normalized linear kernel
(z,2")

Viz, z) {2/, ")

k(z,z') =

which corresponds to the cosine of the angle enclosed by
the vectors, the two most frequently used kernels on vector
spaces are the polynomial kernel and the Gaussian kernel.
Given two parameters | € R,p € Nt the polynomial kernel
is defined as:

k(z,z") = ((z,z") +1)?

The intuition behind this kernel definition is that it is of-
ten useful to construct new features as products of original
features. This way for example the XOR problem can be
turned into a linearly separable problem. The p in above
definition is the maximal order of monomials making up the
new feature space, the [is a bias towards lower order mono-
mial. If [= 0 the feature space consists only of monomials
of order p of the original features.

ExaMPLE: Consider the positive examples (+1,+1), (=1, -1)
and the negative examples (+1, ~1), (—1,41). Clearly, there
is no straight line separating positive from negative exam-
ples. However, if we use the transformation ¢ : (z1,z2) —
(«2, V22122, 23) separation is possible with the plane or-
thonormal to (0,1,0) as the the sign of z1z2 already cor-
responds to the class. To see that this transformation can
be performed implicitly by a polynomial kernel, let z =
(z1,22), 2 = (21, 22) and k(z,2) = (z, z)%. Then

k(z, 2) = (71, 22), (21, 22))? = (2121 + @222)°

= (z121)* + 2122122 + (222)°

= <(mf,\/§z‘1wz,z§) y (zf,\/izlzz,zg)>
= (¢(z), 6(2))

Now, let zt(z ™) be either of the positive (negative) exam-
ples given above. Any example z can be classified without
explicitly transforming instances, as k(z,z%) —k(zx,z™) cor-
responds to implicitly projecting x onto the vector ¢(zt) —
¢(z7) = (0,v2,0).

Given the bandwidth parameter o the Gaussian kernel is
defined as:

k(x,x') = g Ne—"11?/a?

Using this kernel function in a support vector machine can
be seen as using a radial basis function network with Gaus-
sian kernels centered at the support vectors. The images
of the points from the vector space R™ under the map ¢ :
R™ — H with k(z,z’) = (¢(z), ¢(z')) lie all on the surface
of a hyperball in the Hilbert space H. No two images are
orthogonal and any set of images is linearly independent.
The parameter ¢ can be used to tune how much general-
ization is done. For very high o, all vectors ¢(z) are al-
most parallel and thus almost identical. For very small o,
the vectors ¢(z) are almost orthogonal to each other and
the Gaussian kernel behaves almost like the matching ker-
nel ks(z,z') = 1z =2’ and ks(z,z’) =0z # 2. In
applications this often causes a problem known as the ridge
problem, which means that the learning algorithm functions
more or less just as a lookup table.

2.2 Valid Kernels

Technically, a kernel k corresponds to the inner product in
some feature space which is, in general, different from the
representation space of the instances. The computational
attractiveness of kernel methods comes from the fact that

50

quite often a closed form of these ‘feature space inner prod-
ucts’ exists. Instead of performing the expensive transfor-
mation step explicitly, the kernel can be calculated directly,
thus performing the feature transformation only implicitly.
Whether, for a given function £ : X x ¥ — R, a feature
transformation ¢ : X — M into the Hilbert space H exists,
such that k(z,z’) = (#(z), ¢(z’)) for all z,2’ € X can be
checked by verifying that the function is positive definite
[1]. This means that any set, whether a linear space or not,
that admits a positive definite kernel can be embedded into a
linear space. Throughout the paper, we take ‘valid’ to mean
‘positive definite’. Here then is the definition of a positive
definite kernel. (Z™ is the set of positive integers.)

DEFINITION: Let X be a set. A symmetric function k :

X x & — R is a positive definite kernel on X if, for all

neZt z,...,tn € X, and c1,...,cn € R, it follows that
ij€fl,..,ny G G k(zi,35) 2 0.

While it is not always easy to prove positive definiteness for
a given kernel, positive definite kernels do have nice closure
properties. In particular, they are closed under sum, direct
sum, multiplication by a scalar, product, tensor product,
zero extension, pointwise limits, and exponentiation [5].

2.3 Good Kernels

For a kernel method to perform well on some domain, va-
lidity of the kernel is not the only issue. To discuss the
characteristics of good kernels, we need the notion of a con-
cept class. Concepts c are functions ¢ : X — €2, where X is
often referred to as the instance space or problem domain
(examples are elements of this domain) and € are Boolean
labels. A concept class C is a set of concepts.

While there is always a valid kernel that performs poorly
(ko(z,z') = 0), there is also always a valid kernel (k.(z,z") =
+1 & c(z) = c(z') and kq{z,z') = —1 & c(z) # c(z')) that
performs ideally. We distinguish the following three issues
crucial to ‘good’ kernels: completeness, correctness, and ap-
propriateness.

Completeness refers to the extent to which the knowledge
incorporated in the kernel is sufficient for solving the prob-
lem at hand. A kernel is said to be complete if it takes
into account all the information necessary to represent the
concept that underlies the problem domain. Formally, we
call a kernel complete if k(z,-) = k(z',-) implies z = a2’
1. With respect to some concept class, however, it is not
important to distinguish between instances that are equally
classified by all concepts in that particular concept class.
We call a kernel complete with respect to a concept class C
if k(z,-) = k(z', -) implies c(z) = c(z') for all c € C.
Correctness refers to the extent to which the underlying
semantics of the problem are obeyed in the kernel. Cor-
rectness can formally only be expressed with respect to a
certain concept class and a certain hypothesis language. In
particular, we call a kernel correct with respect to a con-
cept class C and support vector machines if for all con-
cepts ¢ € C we can find a; € R,z; € X,0 € R such that
Ve € X : Y, aik(zi,x) > 0 < c(x). For the remainder of
the paper we will use ‘correct’ only with respect to support
vector machines and other kernel methods using a similar
hypothesis language.

!This corresponds to the map ¢, with (¢(z), p(z’)) =
k(z,z') for all z,z’, being injective.

Appropriateness refers to the extent to which examples that
are close to each other in class membership are also ‘close’ to
each other in feature space. Appropriateness can formally
only be defined with respect to a concept class and a learning
algorithm. A kernel is appropriate for learning concepts in
a concept class if polynomial mistake bounds can be derived
for some algorithm using this kernel. This problem is most
apparent in the the matching kernel ks(z,z') = 1 &z =7’
and ks(x,z’) = 0z # z' which is always complete and
correct but (in general) not appropriate.

Empirically, a complete, correct and appropriate kernel ex-
hibits two properties. A complete and correct kernel sep-
arates the concept well, i.e., a learning algorithm achieves
high accuracy when learning and validating on the same part
of the data. An appropriate kernel generalizes well, i.e., a
learning algorithm achieves high accuracy when learning and
validating on different parts of the data.

2.4 Classes of Kernels

A useful conceptual distinction between different kernels is
based on the ‘driving-force’ of their definition. We distin-
guish between syntax and models as the driving-force of the
kernel definition.

Syntaz is often used in typed systems to formally describe
the semantics of the data. It is the most common driving
force. In its simplest case, i.e., untyped attribute-value rep-
resentations, it treats every attribute in the same way. More
complex syntactic representations are graphs, restricted sub-
sets of graphs such as lists and trees, or terms in some (pos-
sibly typed) logic. Whenever kernels are syntax-driven, they
are either special case kernels, assuming some underlying se-
mantics of the application, or they are parameterized and
offer the possibility to adapt the kernel function to certain
semantics.

Models contain some kind of knowledge about the instance
space, i.e., about the relationships among instances. These
models can either be generative models of instances or they
can be given by some sort of transformation relations. Hid-
den Markov models are a frequently used generative model.
Edit operations on a lists are one example for operations
that transform one list into another. The graph defined on
the set of lists by these operations can be seen as a model of
the instance space. While each edge of a graph only contains
local information about neighboring vertices, the set of all
edges, i.e., the graph itself, also contains information about
the global structure of the instance space.

3. MODEL-DRIVEN KERNELS

This section describes different kernel functions defined on
models describing the instance space. These models are ei-
ther constructed form background knowledge about the se-
mantics of the domain at hand or learned from data. The
first part of this section deals with kernel functions defined
on probabilistic, generative models of the instance space.
The second part of the this section describes kernel! func-
tions defined using some kind of similarity relation or trans-
formation operation between instances.

3.1 Kernels from Generative Models

Generative models in general and hidden Markov models
[35] in particular are widely used in computer science. One
of their application areas is protein fold recognition where

51

one tries to understand how proteins fold up in nature. An-
other application area is speech recognition. One motivation
behind the development of kernels on generative models is
to be able to apply kernel methods to sequence data. Se-
quences occur frequently in nature, for example, proteins
are sequences of amino acids, genes are sequences of nucleic
acids, and spoken words are sequences of phonemes. An-
other motivation is to improve the classification accuracy of
generative models.

The first and most prominent kernel function based on a
generative model is the Fisher kernel [17; 18]. The key idea
is to use the gradient of the log-likelihood with respect to
the parameters of a generative model as the features in a
discriminative classifier. The motivation to use this feature
space is that the gradient of the log-likelihood with respect
to the parameters of a generative model captures the gen-
erative process of a sequence rather that just the posterior
probabilities.

Let U; be the gradient of the log-likelihood with respect to
the parameters of the generative model P(z}9) at z:

U, = Vg log P(z|8)

Furthermore, let I be the Fisher information matrix, i.e.,
the expected value of the outer product U,U, over P(z|6).
The Fisher kernel is then defined as k(x,z’) = U] I~1U,.
The Fisher kernel can be calculated whenever the proba-
bility model P(z|8) of the instances given the parameters
of the model has a twice differentiable likelihood and the
Fisher information matrix is positive definite at the chosen
0. Learning algorithms using the Fisher kernel can be shown
to perform well if the class variable is contained as a latent
variable in the probability model. In [17] it has been shown
that under this condition kernel machines using the Fisher
kernel are asymptotically at least as good as choosing the
maximum a posteriori class for each instance based on the
model. In practice often the role of the Fisher information
matrix is ignored, yielding the kernel k(z,z') = UJ U,..
Usually, as a generative model a hidden Markov model is
used and as a discriminative classifier a support vector ma-
chine is used. The Fisher kernel has successfully been ap-
plied in many learning problems where the instances are
sequences of symbols, such as protein classification [16; 20)
and promoter region detection [34].

The key ingredient of the Fisher kernel is the Fisher score
mapping U, that extracts a feature vector from a generative
model. In [39] performance measures for comparing such
feature extractors are discussed. Based on this discussion,
a kernel is defined on models where the class is an explicit
variable in the generative model, rather than only a latent
variable as in the Fisher kernel. Empirically, this kernel
performs favorably to the Fisher kernel on a protein fold
recognition task. A similar approach has been applied to
speech recognition [38].

Recently, a general framework for defining kernel functions
on generative models has been described [40]. The so-called
‘marginalized kernels’ contain the above described Fisher
kernel as a special case. The paper compares other marginal-
ized kernels with the Fisher kernel and argues that these
have some advantages over the Fisher kernel. While, for ex-
ample, Fisher kernels only allow for the incorporation of
second-order information by using a second-order hidden
Markov model [7], other marginalized kernels allow for the
use of second-order information with a first-order hidden

Markov model. In {40} it is shown that incorporating this
second-order information in a kernel function is useful in the
prediction of bacterial genera from their DNA.

In general, marginalized kernels are defined on any genera-
tive model with some visible and some hidden information.
Let the visible information be an element of the finite set
A and the hidden information be an element of the finite
set S. If the hidden information was known, a joint kernel
kz 1 (X %x8) x (X x8) — R could be used. Usually, the hid-
den information is unknown but the expectation of a joint
kernel with respect to the hidden information can be used.
Let z,2' € X and 5,5’ € S. Given a joint kernel k, and
the posterior distribution p(s|z) (usually estimated from a
generative model), the marginalized kernel in X is defined
as:

k(z,2') Y plsle)p(slaYe:((z, 9), (2, 5'))

s,8'€S

To complete this section on kernels from generative mod-
els, the idea of defining kernel functions between sequences
based on a pair hidden Markov model [7] has to be men-
tioned. Such kernels have been developed in [15] and [45].
Strictly speaking pair hidden Markov models are not mod-
els of the instance space, they are generative models of an
aligned pair of sequences [7].

Recently, [36] has shown that syntactic string kernels (pre-
sented in section 4.2) can be seen as a special case of Fisher
kernels of a k-stage Markov process with uniform distribu-
tions over the transitions.

3.2 Kernels from Transformations

This section describes kernels that are based on knowledge
about common properties of instances or transformations
between instances. The best known kernel in this class is
the diffusion kernel.

The motivation behind diffusion kernels [24] is that it is often
more easy to describe the local neighborhood of an instance
than to describe the structure of the whole instance space
or to compute a similarity between two arbitrary instances.
The neighborhood of an instance might be all instances that
differ with this one only by the presence or absence of one
particular property. When working with molecules, for ex-
ample, such properties might be functional groups or bonds.
The neighborhood relation obviously induces global infor-
mation about the make up of the instance space. The ap-
proach taken in the diffusion kernel is to try to capture this
global information in a kernel function merely based on the
neighborhood description.

The main mathematical tool used in diffusion kernels is ma-
trix exponentiation. The exponential of a square matrix H
is defined as

BH)'

7!

7 = lim

3
|
:
=

=0

It is known that the limit always exists and that €*” is a

positive definite matrix if H is symmetric. In this case it is

also possible to compute e’ efficiently by first diagonalizing

the matrix H such that H = T~!DT and then computing
e =1771ePPT

where &P

onal).

can be computed component-wise (as D is diag-

52

The matrix H is called the ‘generator’. The kernel matrix
is defined as the exponential of the generator. In the case of
instance spaces that have undirected graph structure, {24]
suggests to use the negative Laplacian of the graph as the
generator. Let G = (V,£) be an undirected graph with
vertices V = {v;} and edges £ C 2". In particular {v;,v;} €
£ if there is an edge between vertices v; and v;. Furthermore,
let 6(vi) = {v; € V : {wm,v;} € £}. Then the negative
Laplacian of the graph is given by

1 {I/i, Vj} €&
[Hli; = —l6@)| vi=v;
0 otherwise

where H;; denotes the %, j-th component of the generator
matrix. To generalize this to the case of graphs with weighted
and/or parallel edges, the components of H;; for v; # v; are
replaced by the sum over the weights of all edges between
1753 a.nd vj.

If the instance space is big, the computation of e®¥ sug-
gested above might still be too expensive. For some special
instance space structures, such as regular trees, complete
graphs, and closed chains [24] gives closed forms for directly
computing the exponential of the generator and thus the
kernel matrix. An application of the diffusion kernel to gene
function prediction has been described in [43].

A similar idea of defining a kernel function on the structure
of the instance space is described in [42]. In that paper it is
described how global patterns of inheritance can be incorpo-
rated in a kernel function and how missing information can
be dealt with using a probabilistic model of inheritance. The
main difference to the diffusion kernel is that the structures
considered are directed trees and that instances correspond
to sets of vertices in these trees rather than single instances.
Trees are connected acyclic graphs where one vertex has no
incoming edge and all other nodes have exactly one incom-
ing edge. The application considered in that paper is that
of classifying phylogenetic profiles. A phylogenetic profile
contains information about the organisms in which a partic-
ular gene occurs. The phylogenetic information considered
in [42] is represented as a tree such that each leaf (a vertex
with no outgoing edge) corresponds to one living organism
and every other vertex corresponds to some ancestor of the
living organisms. To represent genes, every vertex of the
tree is assigned a random variable. The value of this ran-
dom variable indicates whether the corresponding organism
has a homologue of the particular gene or not.

If the genomes of all ancestor organisms were available, this
information could be used to define a kernel function re-
flecting the similarity between evolutions. A subtree of the
above described tree along with an assignment of indicator
values to this tree is called an evolution pattern. Ideally the
kernel function on two genes would be defined as the num-
ber of evolution patterns that agree with the phylogenetic
histories of both genes. An evolution pattern agrees with a
phylogenetic history if the assignment of indicator variables
is the same for all vertices in the evolution pattern. As
the genomes are only known for some ancestor organisms,
a probabilistic model that can be used to estimate missing
indicator variables is suggested in {42].

For two given phylogenetic profiles x,yr the kernel is de-
fined as follows. Let T be a tree, L be the leaf nodes and
C(T) the set of all possible subtrees of T. One particular

evolution pattern can be expressed as a subtree S € C(T)
and the corresponding assignment zs of indicator values.
p(zs) denotes the probability of such an evolution pattern
having occurred in nature and p(zr|zs) is the probability
of observing a particular phylogenetic profile zz, given the
evolution pattern zs (obtained from the probabilistic model
mentioned above). Then the tree kernel for phylogenetic
profiles is defined as:

kewyr)= D, Y plas)p(zles)p(ysles)

SeC(T) zs

In [42] it is shown that this kernel function can be computed
in time linear in the size of the tree.

4. SYNTAX-DRIVEN KERNELS

This section describes different kernel definitions based on
the syntax of the representation. The simplest way to apply
kernel methods to multi-relational data it to first transform
the data into a single table. This process is called propo-
sitionalization [25]. The first application of support vector
machines to propositionalized data is described in [26]. We
will not consider such approaches in more detail in this pa-
per, we will rather concentrate on kernels defined directly
on structured data.

The most prominent kernel for representation spaces that
are not mere attribute-value tuples, the convolution kernel,
is introduced first. Its key idea is to define a kernel on a
composite object by means of kernels on the parts of the
objects. This idea is also reflected in many of the kernel
functions developed later and described thereafter in this
section. Several kernel functions have been defined on se-
quences of discrete symbols. The idea is always to extract all
possible subsequences (of some kind) and to define the ker-
nel function based on the occurrence and similarity of these
subsequences. This idea can be generalized to extracting
subtrees of trees and defining a kernel function based oc-
currence and similarity of subtrees in two trees. A rather
different approach is that of representing the instances of the
learning task as terms in a typed higher-order logic. These
terms are powerful enough to allow for a close modeling of
the semantics of different objects by means of the syntax of
the representation. The last kernel described in this section
is a kernel defined on instances represented by graphs.

4.1 Convolutions

The best known kernel for representation spaces that are
not mere attribute-value tuples is the convolution kernel
proposed by Haussler {15]. The basic idea of convolution
kernels is that the semantics of composite objects can of-
ten be captured by a relation R between the object and its
parts. The kernel on the object is then made up from kernels
defined on different parts.

Let z,2' € X be the objects and #,& € X} x --- x Xp
be tuples of parts of these objects. Given the relation R :
(X1 x -+ x Xp) x X we can define the decomposition R~
as R~ !(z) = {Z : R(&,z)}. Then the convolution kernel is
defined as

D
Z H ka(za, T4)

FeRrR—1 (z)’z‘leR—l (=’) d=1

kconv (-’Ey 3:,) =

The term ‘convolution kernel’ refers to a class of kernels
that can be formulated in the above way. The advantage

53

of convolution kernels is that they are very general and can
be applied in many different problems. However, because of
that generality, they require a significant amount of work to
adapt them to a specific problem, which makes choosing R
in ‘real-world’ applications a non-trivial task.

4.2 Strings

While the traditional kernel function used for text classi-
fication is simply the scalar product of two texts in their
‘bag-of-words’ representation [19], this kernel function does
not take the the structure of the text or words into account
but simply the number of times each word occurs. More
sophisticated approaches try to define a kernel function on
the sequence of characters. Similar approaches define ker-
nel functions on other sequences of symbols, e.g., on the
sequence of symbols each corresponding to one amino acid
and together describing a protein.

The first kernel function defined on strings can be found in
[46; 31] and is also described in [5; 37). The idea behind
this kernel is to base the similarity of two strings on the
number of common subsequences. These subsequences need
not be contiguous in the strings but the more gaps in the
occurrence of the subsequence, the less weight is given to it
in the kernel function. This can be best illustrated by an
example.

Consider the two strings ‘cat’ and ‘cart’. The common sub-
sequences are ‘c’, ‘a’, ‘t’, ‘ca’, ‘at’, ‘ct’, ‘cat’. As mentioned
above, it is useful to penalize gaps in the occurrence of the
subsequence. This can be done using the total length of a
subsequence in the two strings. We now list the common
subsequences again and give the total length of their oc-
currence in ‘cat’ and ‘cart’ as well: ‘c:1/1, ‘a’:1/1, ‘t":1/1,
‘ca’2/2, ‘at’:2/3, ‘ct”:3/4, ‘cat’:3/4. Usually, an exponential
decay is used. With a decay factor A the penalty associ-
ated with each substring is ‘c’:(ATAl), ‘a:(A1AY), «:(A1AD),
‘ca’:(A2A2), ‘at’:(AZA3), ‘ct’:(A3A%), ‘cat’:(A3A%). The kernel
function is then simply the sum over these penalties, i.e.,
k(‘cat’, ‘cart’) = 207 + A% + 2% + 322

Let ¥ be a finite alphabet, 3™ the set of strings of length n
from that alphabet and X* the set of all strings from that
alphabet. Let |s] denote the length of the string s € X* and
let the symbols in s be indexed such that s = s1s2...5.
For a set of indices % let s[i] be the subsequence of s induced
by this set of indices and let I(i) denote the total length
of s[i] in s, i.e., the biggest index in 7 minus the smallest
index in ¢ plus one. We are now able to define the feature
transformation ¢ underlying the string kernel. For some
string u € " the value of the feature ¢, (s) is defined as:

b= Y A

iru=asld]

The kernel between two strings s,t € £* is then simply the
scalar product of ¢(s) and ¢(t) and can be written as:

k(s t)= 3 gu(@gu®)= 3 3 T NOHO

ugE™ wEL? iru=s(i] jiu=t[j]

While this computation appears very expensive, recursive
computation can be reduced to O(n|s||t|) [31].

An alternative to the above kernel has been used in [33] and
[27] where only contiguous substrings of a given string are
considered. A string is then represented by the number of
times each unique substring of (up to) n symbols occurs in

the sequence. This representation of strings by their con-
tiguous substrings is known as the spectrum of a string or
as its n-gram representation. The kernel function is simply
the scalar product in this representation. It is shown in {27]
that this kernel can be computed in time linear in the length
of the strings and the length of the considered substrings. In
[33] not all possible n-grams are used but a simple statistical
test is employed as a feature subset selection heuristic. This
kernel has been applied to protein {27] and spoken text {33]
classification. Spoken text is represented by a sequence of
phonemes, syllables, or words.

Many empirical results comparing the above kernel functions
can be found in [30]. As shown in [36] these kernels can
be seen as a special case of the Fisher kernel (presented in
section 3.1). This perspective leads to a generalization of
the above kernel that is able to deal with variable length
substrings. In [44] and [28] string kernels similar to the n-
gram kernel are considered and it is shown how these can
be computed efficiently by using suffix and mismatch trees,
respectively. The main conceptual difference to the n-gram
kernel is that a given number of mismatches is allowed when
comparing the n-grams to the substrings.

Another kernel on strings can be found in [47]. The focus of
that paper is on the recognition of translation inition sites in
DNA or mRNA sequences. This problem is quite different
from the above considered applications. The main difference
is that rather than classifying whole sequences, in this task
one codon (three consecutive symbols) from a sequence has
to be identified as the translation inition site. Each sequence
can have arbitrarily many candidate solutions of which one
has to be chosen. However, in [47] and earlier work this
problem is converted into a traditional classification problem
on sequences of equal length.

Fixed length windows of symbols centered at each candidate
solution are extracted from each sequence. The class of one
such window corresponds to the candidate solution being a
true translation inition site or not. One valid kernel on these
sequences is simply the number of symbols that coincide
in the two sequences. Other kernels can, for example, be
defined as a polynomial of this kernel.

Better classification accuracy is, however, reported in {47)
for a kernel that puts more emphasis on local correlations.
Let n be the length of each window and ¥ be the set of
possible symbols, then each window is an element of ™. For
z,z’ € T™ let zi, z} denote the i-th element of each sequence.
Using the matching kernel ks on T (ks : 2x T — R is defined
as ks(zi,x;) = 1 if z; = =} and ks(w:,z}) = 0 if z; #)
first a polynomial kernel on a small sub-window of length
2l + 1 with weights w; € R and power d; is defined:

d
! 1

ki(z ') = | D wiks(@irs, Tiys)

=1

Then the kernel on the full window is simply the polynomial
of power d2 of the kernels on the sub-windows:

n—1 d2
k(z,z') = (E k.'(:l:,a:/))

i=l

This kernel is called the ‘locality-improved’ kernel. An em-
pirical comparison to other general purpose machine learn-
ing algorithms shows competitive results for | = 0 and better

54

results for larger I. These results were obtained on the above
mentioned translation inition site recognition task.

Even better results can be achieved by replacing the symbol
at some position in the above definition with the conditional
probability of that symbol given the previous symbol. Let
pi,T1s(Zi|@i-1) be the probability of symbol z; at position 4
given symbol z;_1 at position ¢ — 1, estimated over all true
translation inition sites. Furthermore, let p; apLL(zi|Ti-1) be
the probability of symbol z; at position ¢ given symbol z;..,
at position ¢ — 1, estimated over all candidate sites. Then
we define

si(z) = log pi mis(@ilzi—1) — log pi,aLL{®:|zi-1)

and replace z;4; in the locality-improved kernel by s;.;(z)
and the matching kernel by the product. A support vec-
tor machine using this kernel function cutperforms all other
approaches applied in [47].

4.3 Trees

A kernel function that can be applied in many natural lan-
guage processing tasks is described in [4]. The instances of
the learning task are considered to be labeled ordered di-
rected trees. The key idea to capture structural information
about the trees in the kernel function is to consider all sub-
trees occurring in a parse tree. Here, a subtree is defined as
a connected subgraph of a tree such that either all children
or no child of a vertex is in the subgraph. The children of a
vertex are the vertices that can be reached from the vertex
by traversing one directed edge. The kernel function is the
inner product in the space which describes the number of
occurrences of all possible subtrees.

Consider some enumeration of all possible subtrees and let
hi(T") be the number of times the i-th subtree occurs in tree
T. For two trees Ty, T> the kernel is then defined as

K(Th,T2) =Y ha(T1)hi(T2)

Furthermore, for the sets of vertices V1 and Vs of the trees
T1 and T, let S(vy,v2) with va € V4, v2 € V; be the number
of subtrees rooted at vertex v; and o that are isomorphic.
Then the tree kernel can be computed as

kT, Tx) = Z hi(T1)hi(T3) = Z

v EV1,v0€ Vs

S(’U],’U2)

Let label(v) be a function that returns the label of vertex v,
let |6 (v)| denote the number of children of vertex v, and
let 6% (v, 5) be the j-th child of vertex v (only ordered trees
are considered). S(vi,v2) can efficiently be calculated as
follows: S(v1,v2) = O if label(vi) # label(va). S(v1,v2) =1
if label(v;) = label(va) and |6 (v1)| = |0"(v2)| = 0. Other-
wise?,
8% (u)]
S('Ul,’vg) = H (1 + S(6+(’Ul,j), 5+(v2,j)))

k=1

This recursive computation has time complexity O(|WV1}[V2|).
Experiments investigated how much the application of a ker-
nelized perceptron algorithm to trees generated by a prob-
abilistic context free grammar outperforms the use of the

ZNote that in this case [6% (v1)| = |6% (v2)], as actually the
number of children of a vertex is determined by its label.
This is due to the nature of the natural language processing
applications that are considered.

probabilistic context free grammar alone. The empirical re-
sults achieved in [4] are promising. The kernel function used
in these experiments is actually a weighted variant of the
kernel function presented above.

A generalization of this kernel to also take into account other
substructures of the trees is described in [22]. A substructure
of a tree is defined as a tree such that there is a descendants
preserving mapping from vertices in the substructure to ver-
tices in the tree>. Another generalization considered in that
paper is that of allowing labels to partially match. Promis-
ing results have been achieved with this kernel function in
HTML document classification tasks.

Recently, {44] proposed the application of string kernels to
trees by representing each tree by the sequence of labels
generated by a depth-first traversal of the trees, written in
preorder notation. To ensure that trees only differing in the
order of their children are represented in the same way, the
children of each vertex are ordered according to the lexical
order of their string representation.

4.4 Basic Terms

In [14] a framework has been been proposed that allows
for the application of kernel methods to different kinds of
structured data. This approach is based on the idea of hav-
ing a powerful representation that allows for modeling the
semantics of an object by means of the syntax of the rep-
resentation. The underlying principle is that of represent-
ing individuals as (closed) terms in a typed higher-order
logic [29]. The typed syntax is important for pruning search
spaces and for modeling as closely as possible the seman-
tics of the data in a human- and machine-readable form.
The individuals-as-terms representation is a natural gener-
alization of the attribute-value representation and collects
all information about an individual in a single term.

The key idea is to have a fixed type structure. This type
structure expresses the semantics and composition of indi-
viduals from their parts. The type structure is made up by
function types, product types, and type constructors. Func-
tion types are used to represent types corresponding to sets,
multisets, and so on. Product types are used to represent
types corresponding to fixed size tuples. Type constructors
are used to represent types corresponding to arbitrary size
structured objects such as lists, trees, and so on. The set
of type constructors also contains types corresponding to
symbols and numbers.

To define, for example, a type corresponding to a subset
of {A, B,C, D} one first defines a type constructor of arity
zero, corresponding to elements of this set. Then the type
corresponding to a sets of these elements is a function type
where the function is from the set of elements to the set
of Boolean values. The type corresponding to a multi-set
of these elements is a function type where the function is
from the set of elements to the set of natural numbers. It
is important to note that the elements of these sets, lists,
etc. are not restricted to be mere symbols but can again
be structured objects. Thus one can, for example, define a
type corresponding to a set of lists, or a list of sets.

Each type defines a set of terms that represent instances of
that type, these are called the basic terms. The terms of the
logic are the terms of the typed A-calculus, which are formed

3A descendant of a vertex v is any vertex that occurs in the
subtree rooted at v.

55

in the usual way by abstraction, tupling, and application.
Abstraction corresponds to building instances of a function
type, tupling to building instances of a product type, and
application to building instances of a type constructor.

To this end the biggest difference to terms of a first-order
logic is the presence of abstractions that allows modeling
sets, multisets, and so on. For example, the basic terms s,¢
representing the set {1,2} and the multiset with 42 occur-
rences of A and 21 occurrences of B (and nothing else) are,
respectively:

s=Mx.if x=1then Telseif z=2then T else L
t = Az.if x = A then 42 else if z = B then 21 else 0

Now, we need some additional notation. For a basic ab-
straction 7, V(r u) denotes the value of » when applied to
u, i.e.,, V(s 2) = T and V(t C) = 0. The default term is
the value of the abstraction that has no condition, i.e., the
default term of s is L and the default term of ¢ is 0. The
support of an abstraction is the set of terms u for which
V(r u) differs from the default term, i.e., supp(s) = {1,2}
and supp(t) = {A, B}. More details of the knowledge rep-
resentation can be found in [29]. The basic term kernel [14]
is then defined inductively on the structure of terms.

If 5,1 are basic terms formed by application, i.e., instances of
a type constructor, then sis C s1...s, and tis Dty ... tm,
where C, D are data constructors and s;,t; are basic terms.
The kernel is then defined as

kr(C, D) ifCs# D
kr(C,C) + E k(si,ti) otherwise

i=1

k(s,t) =

If s,t are basic terms formed by abstraction, i.e., instances
of a function type, then the kernel is defined as

ks,t)y= Y k(V(sw),V(tv)) k(u,v).
u€supp(s)
vEsupp(t)
If s,t are basic terms formed by tupling, i.e., instances of
a product type, then s is (s1,...,8,) and t is (t1,...,%,),
where s;,t; are basic terms. The kernel is then defined as

k(s t) = }ﬂ:k(si,ti),

i=1

In [14] additional ‘modifiers’ are described that allow for
the modification of the default kernels in order to reflect the
semantics of the domain better. We will now describe some
applications along with the type definitions.

In drug activity prediction it is common to represent the
shape of a molecule by measuring the distance from the cen-
ter of the molecule to the surface in several directions. Thus
a shape can be described by a tuple of real numbers. As,
however, the shape of the molecule changes as its energy
state changes, each molecule can only be described by a set
of shapes (conformations). A molecule is active if one of its
conformations satisfies some conditions, this is known as a
‘multi-instance’ concept. The task of classifying a molecule
as active or inactive given the set of its conformations has
been introduced in [6]. In [12] each molecule is represented
by a set of conformations (i.e., an abstraction mapping a
conformation to ‘true’ if it is a member of that set and to
‘false’ otherwise), and each conformation is represented by a

tuple of real numbers. It can be shown that the correspond-
ing basic term kernel is correct with respect to support vec-
tor machines and multi-instance concepts. In an empirical
evaluation, support vector machines proofed competitive to
the best results achieved in literature.

For spatial clustering it is important to gather data points
in a cluster that are not only spatially close but also demo-
graphically similar. Applying a simple clustering algorithm
to vectors containing both the spatial and the demographic
information fails to find spatially compact clusters. Model-
ing the spatial and demographic information as two different,
types and defining the type of the individuals as a function
type mapping the spatial information to the corresponding
demographic information leads to a kernel function that can
be used by a simple clustering algorithm to find spatially
compact clusters [14].

To elucidate the structure of molecules, spectroscopic meth-
ods such as *3C NMR are frequently used. A spectrum
contains information about the resonance frequency of each
(chemically different) carbon atom in the molecule. Addi-
tional information can be obtained describing the number
of protons directly connected with each carbon atom (the
multiplicity). The task of predicting the skeleton structure
of molecules from their NMR spectrum has been introduced
in {9]. A spectrum is modeled as an abstraction mapping
each resonance frequency to the multiplicity of the corre-
sponding carbon atom and mapping every other frequency
to zero. A support vector machine using the corresponding
kernel function and and a nearest neighbor algorithm using
the corresponding metric have been shown to outperform all
other algorithms applied in literature to this problem.

4.5 Graphs

Labeled graphs are widely used in computer science to model
data. Some of the work described above can be seen as
kernels on some restricted set of graphs, e.g., on strings or on
trees. In this section we consider recent work [13] on labeled
graphs with arbitrary structure. Such kernel functions can,
for example, be useful in learning tasks on molecules.

A graph G is described by a finite set of vertices V and a
finite set of edges £. For directed graphs, the set of edges is
a subset of the Cartesian product of the set of vertices with
itself (£ C V x V) such that that (v;,v;) € £ if and only if
there is an edge from v; to v; in graph G. For labeled graphs
there is additionally a set of labels along with a function
assigning a label to each edge and/or vertex.

The definition of a complete graph kernel is slightly dif-
ferent from the definition of complete kernels given above.
In general it is not desired that learning algorithms distin-
guish between isomorphic graphs, i.e., graphs that only differ
in the enumeration of their vertices. Complete graph ker-
nels are those positive definite functions on graphs for which
k(G,) = k(G',-) if and only if G, G’ are isomorphic.

Using a complete graph kernel and computing k(G,G) —
2k(G, G') + k(G, G) one could decide whether G, G’ are iso-
morphic [13]. As deciding graph isomorphism is suspected
to be computationally hard, one can conclude that no effi-
ciently computable complete graph kernel exists. It can also
be shown that some complete graph kernels are NP-hard to
compute.

Consider a graph kernel that has one feature &5 for each
possible graph H, each feature ® 5 (G) measuring how many
subgraphs of G have the same structure as graph H. Using

56

the inner product in this feature space, graphs satisfying
certain properties can be identified. In particular, one could
decide whether a graph has a Hamiltcnian path [13], i.e.,
a sequence of adjacent vertices that contains every vertex
exactly once. Now this problem is known to be NP-hard,
i.e., it is strongly believed that this problem can not be
solved in polynomial time.

The two results given above motivate the search for alterna-
tive graph kernels which are less expressive and therefore less
expensive to compute. Conceptually, the graph kernels pre-
sented in {10; 13; 21; 23] are based on a measure of the walks
in two graphs that have some or all labels in common. In
[10] walks with equal initial and terminal label are counted,
in [21; 23] the probability of random walks with equal label
sequences is computed, and in {13] walks with equal label
sequences, possibly containing gaps, are counted.

We consider here the work presented in [13]. In this work,
efficient computation of these — possibly infinite — walks is
made possible by using the direct product graph and com-
puting the limit of matrix power series involving its adja-
cency matrix.

The two graphs generating the product graph are called the
factor graphs. The vertex set of the direct product of two
graphs is a subset of the Cartesian product of the vertex
sets of the factor graphs. The direct product graph has a
vertex if and only if the labels of the corresponding vertices
in the factor graphs are the same. There is an edge between
two vertices in the product graph if there is an edge between
the corresponding vertices in both factor graphs and both
edges have the same label. To build its adjacency matrix,
assume some arbitrary enumeration {v;}; of the vertices.
Each component of the adjacency matrix Ey is defined by
[Ex]i,j =14 (v,v;) € Ex and [Ex]ij =0& (v,v;) € Ex,
where £x denotes the edge set of the direct product graph.
With a sequence of weights Ao, A1, ... (A € R;A; > 0 for all
i € N) the direct product kernel is then defined as

lvxl oo
kx(G1,G2) = Y [Z AnE;”]

i,7=1 [n=0

ij
if the limit exists. Using exponential series (/\i =g /z‘) or
geometric series (A; =7'), this kernel can be computed
in cubic time. Extensions suggested in [13] include a kernel
for counting label sequences with gaps, and one for handling
transition graphs, i.e., graphs with a probability distribution
over all edges leaving the same vertex.

One interesting application of such graph kernels is an ex-
periment in a relational reinforcement learning setting, de-
scribed in [11]. In that paper Gaussian processes were ap-
plied with graph kernels as the covariance function. Exper-
iments were performed in blocks worlds of up to ten blocks
with three different goals. In this setting Gaussian processes
with graph kernels proofed competitive or superior to all
previous implementations of relational reinforcement learn-
ing algorithms, although it did not use any sophisticated
instance selection strategy.

S. CONCLUSIONS

It has often been argued that relational data mining and
inductive logic programming approaches should have suc-
cessful propositional learning algorithms as a special case.
Support vector machines are one of the most successful re-

cent developments within the machine learning area. Thus
developing algorithms that can be a applied to structured
data and have support vector machines as a special case
is a promising research direction. This can be achieved by
defining positive definite kernels on structured data.

Such positive definite kernels allow algorithms to be applied
to structured data that solve learning problems so far not
considered by the inductive logic programming community.
One example is kernel principal component analysis which
finds optimal embeddings of structured data into low dimen-
sional spaces. Such an embedding can, for example, be used
to visualize the relationship among instances, or to find a
good attribute-value representation of the data.

Support vector machines have many computational and learn-
ing theoretical properties that make them a very interesting
and popular learning algorithm. Many of these properties
follow from the kernel function being positive definite. The
problem of finding a hyperplane which is maximally distant
from points on either side of the hyperplane can be formu-
lated as a quadratic program. Such problems are convex if
and only if the matrix they are operating on is positive defi-
nite. A convex problem has only one local - and thus global
- optimum. This optimum can be found efficiently by well
known optimization algorithms.

In this paper we described several approaches to define pos-
itive definite kernel functions on various kinds of structured
data. On the one hand, kernel functions that are applica-
ble to similar kinds of data have been compared and their
respective application areas briefly described. On the other
hand, conceptual differences between approaches have been
clarified and summarized.

We believe that investigating kernels on structured data is
an important and promising research area. While several
kernels have been defined so far, this research area is still
very young and there is space for more work.

6. ACKNOWLEDGMENTS

Research supported in part by the EU Framework V project
(IST-1999-11495) Data Mining and Decision Support for Busi-
ness Competitiveness: Solomon Virtual Enterprise and the
DFG project (WR 40/2-1) Hybride Methoden und Systemar-
chitekturen fir heterogene Informationsrgume. The author
thanks Peter Flach, Tamds Horvath, John Lloyd, and Stefan
Wrobel for valuable discussions and comments.

7. REFERENCES

{1] N. Aronszajn. Theory of reproducing kernels. Transac-
tions of the American Mathematical Society, 68, 1950.

[2] K. Bennett and C. Campbell. Support vector machines:
Hype or hallelujah? SIGKDD Explorations, 2(2), 2000.
http://www.acm.org/sigs/sigkdd /explorations/issue2-
2/bennett.pdf.

(3] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training
algorithm for optimal margin classifiers. In D. Haus-
sler, editor, Proceedings of the 5th Annual ACM Work-
shop on Computational Learning Theory, pages 144—
152. ACM Press, July 1992.

[4] M. Collins and N. Duffy. Convolution kernels for nat-
ural language. In T. G. Dietterich, S. Becker, and

57

[5

{6

{7

(8

[9

(10]

(11]

(12]

[13]

(14]

(18]

(16]

(17)

18]

Z. Ghahramani, editors, Advances in Neural Informa-
tion Processing Systems, volume 14, MIT Press, 2002.

N. Cristianini and J. Shawe-Taylor. An Introduction
to Support Vector Machines (and Other Kernel-Based
Learning Methods). Cambridge University Press, 2000.

T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez.
Solving the multiple instance problem with axis-parallel
rectangles. Artificial Intelligence, 89(1-2):31-71, 1997.

R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Bio-
logical Sequence Analysis: Probabilistic Models of Pro-
teins and Nucleic Acids. Cambridge University Press,
1998.

S. Dzeroski and N. Lavrag, editors. Relational Data
Mining. Springer-Verlag, 2001.

S. Dzeroski, S. Schulze-Kremer, K. Heidtke, K. Siems,
D. Wettschereck, and H. Blockeel. Diterpene struc-
ture elucidation from *C NMR spectra with induc-
tive logic programming. Applied Artificial Intelligence,
12(5):363-383, July-Aug. 1998. Special Issue on First-
Order Knowledge Discovery in Databases.

T. Gartner. Exponential and geometric kernels for
graphs. In NIPS Workshop on Unreal Data: Principles
of Modeling Nonvectorial Data, 2002.

T. Gartner, K. Driessens, and J. Ramon. Graph ker-
nels and gaussian processes for relational reinforcement
learning. In Proceedings of the 13th International Con-
ference on Inductive Logic Programming, 2003.

T. Gartner, P. A. Flach, A. Kowalczyk, and A. J.
Smola. Multi-instance kernels. In C. Sammut and
A. Hoffmann, editors, Proceedings of the 19th Interna-
tional Conference on Machine Learning, pages 179-186.
Morgan Kaufmann, June 2002.

T. Gértner, P. A. Flach, and S. Wrobel. On graph ker-
nels: Hardness results and efficient alternatives. In Pro-
ceedings of the 16th Annual Conference on Computa-
tional Learning Theory and the 7th Kernel Workshop,
2003.

T. Gértner, J. W. Lloyd, and P. A. Flach. Kernels
for structured data. In Proceedings of the 12th Inter-
national Conference on Inductive Logic Programming.
Springer-Verlag, 2002.

D. Haussler. Convolution kernels on discrete structures.
Technical report, Department of Computer Science,
University of California at Santa Cruz, 1999.

T. Jaakkola, M. Diekhans, and D. Haussler. A discrimi-
native framework for detecting remote protein homolo-
gies. Journal of Computational Biology, 7(1,2), 2000.

T. Jaakkola and D. Haussler. Exploiting generative
models in discriminative classifiers. In Advances in Neu-
ral Information Processing Systems, volume 10, 1999.

T. Jaakkola and D. Haussler. Probabilistic kernel re-
gression models. In Proceedings of the 1999 Conference
on AI and Statistics, 1999.

[19] T. Joachims. Learning to Classify Text using Support
Vector Machines. Kluwer Academic Publishers, 2002.

[20] R. Karchin, K. Karplus, and D. Haussler. Classifying
g-protein coupled receptors with support vector ma-
chines. Bioinformatics, 18(1):147-159, 2002.

{21] H. Kashima and A. Inokuchi. Kernels for graph classi-
fication. In ICDM Workshop on Active Mining, 2002.

[22] H. Kashima and T. Koyanagi. Kernels for semi-
structured data. In C. Sammut and A. Hoffmann, ed-
itors, Proceedings of the 19th International Conference
on Machine Learning. Morgan Kaufmann, 2002.

H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized
kernels between labeled graphs. In Proceedings of the
20tk International Conference on Machine Learning,
2003.

R. I. Kondor and J. Lafferty. Diffusion kernels on graphs
and other discrete input spaces. In C. Sammut and
A. Hoffmann, editors, Proceedings of the 19th Interna-
tional Conference on Machine Learning, pages 315-322.
Morgan Kaufmann, 2002.

(23]

(24]

[25] S. Kramer, N. Lavrag, and P. A. Flach. Proposi-
tionalization approaches to relational data mining. In

Dzeroski and Lavrag (8], chapter 11.

M.-A. Krogel and S. Wrobel. Transformation-based
learning using multirelational aggregation. In C. Rou-
veirol and M. Sebag, editors, Proceedings of the 11th
International Conference on Inductive Logic Program-
ming. Springer-Verlag, 2001.

C. Leslie, E. Eskin, and W. Noble. The spectrum ker-
nel: A string kernel for svm protein classification. In
Proceedings of the Pacific Symposium on Biocomput-
ing, pages 564-575, 2002.

C. Leslie, E. Eskin, J. Weston, and W. Noble. Mis-
match string kernels for svm protein classification. In
S. Becker, S. Thrun, and K. Obermayer, editors, Ad-
vances in Neural Information Processing Systems, vol-
ume 15. MIT Press, 2003.

(26]

(27]

[28

o=

[29
(30]

J. W. Lloyd. Logic for Learning. Springer-Verlag, 2002.

H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini,
and C. Watkins. Text classification using string kernels.
Journal of Machine Learning Research, 2, 2002.

H. Lodhi, J. Shawe-Taylor, N. Christianini, and
C. Watkins. Text classification using string kernels. In
T. Leen, T. Dietterich, and V. Tresp, editors, Advances
in Neural Information Processing Systems, volume 13.
MIT Press, 2001.

K.-R. Miiller, S. Mika, G. Rétsch, K. Tsuda, and
B. Schélkopf. An introduction to kernel-based learning
algorithms. IEEFE Transactions on Neural Networks,
2(2), 2001.

(31]

32)

[33] G. Paass, E. Leopold, M. Larson, J. Kindermann,
and S. BEickeler. Svm classification using sequences of
phonemes and syllables. In T. Elomaa, H. Mannila, and
H. Toivonen, editors, Proceedings of the 6th European
Conference on Principles of Data Mining and Knowl-

edge Discovery, pages 373-384. Springer-Verlag, 2002.

58

[34] P. Pavlidis, T. Furey, M. Liberto, D. Haussler, and
W. Grundy. Promoter region-based classification of
genes. In Proceedings of the Pacific Symposium on Bio-
computing, pages 151-163, 2001.

[35] L. R. Rabiner. A tutorial on hidden Markov models and
selected applications in speech recognition. Proceedings
of the IEEE, 77(2):257~285, Feb. 1989.

{36] C. Saunders, J. Shawe-Taylor, and A. Vinokourov.
String kernels, fisher kernels and finite state automata.
In S. Becker, S. Thrun, and K. Obermayer, editors, Ad-
vances in Neural Information Processing Systems, vol-
ume 15. MIT Press, 2003.

[37] B. Scholkopf and A. J. Smola. Learning with Kernels.
MIT Press, 2002.

[38] N. Smith and M. Gales. Speech recognition using
SVMs. In T. Dietterich, S. Becker, and Z. Ghahra-
mani, editors, Advances in Neural Information Process-
ing Systems, volume 14. MIT Press, 2002.

[39] K. Tsuda, M. Kawanabe, G. Rétsch, S. Sonnenburg,
and K.-R. Miiller. A new discriminative kernel from
probabilistic models. In T. Dietterich, S. Becker, and
Z. Ghahramani, editors, Advances in Neural Informa-
tion Processing Systems, volume 14. MIT Press, 2002.

[40] K. Tsuda, T. Kin, and K. Asai. Marginalized kernels

for biological sequences. Bioinformatics, 2002.

[41] V. Vapnik. The Nature of Statistical Learning Theory.
Springer-Verlag, 1995.

[42] J.-P. Vert. A tree kernel to analyze phylogenetic pro-
files. Bioinformatics, 2002.

[43] J.-P. Vert and M. Kanehisa. Graph driven features ex-
traction from microarray data using diffusion kernels
and kernel cca. In S. Becker, S. Thrun, and K. Ober-
mayer, editors, Advances in Neural Information Pro-
cessing Systems, volume 15. MIT Press, 2003.

[44] S. Vishwanathan and A. Smola. Fast kernels for string
and tree matching. In S. Becker, S. Thrun, and K. Ober-
mayer, editors, Advances in Neural Information Pro-

cessing Systems, volume 15. MIT Press, 2003.

C. Watkins. Dynamic alignment kernels. Technical re-
port, Department of Computer Science, Royal Hol-
loway, University of London, 1999.

(45]

[46] C. Watkins. Kernels from matching operations. Tech-
nical report, Department of Computer Science, Royal

Holloway, University of London, 1999.

A. Zien, G. Ratsch, S. Mika, B. Schélkopf, T. Lengauer,
and K.-R. Muller. Engineering support vector machine
kernels that recognize translation initiation sites. Bioin-
formatics, 16(9):799-807, 2000.

47

