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Abstract Computational intelligence techniques have
been used in wide applications. Out of numerous compu-
tational intelligence techniques, neural networks and sup-
port vector machines (SVMs) have been playing the
dominant roles. However, it is known that both neural
networks and SVMs face some challenging issues such as:
(1) slow learning speed, (2) trivial human intervene, and/or
(3) poor computational scalability. Extreme learning
machine (ELM) as emergent technology which overcomes
some challenges faced by other techniques has recently
attracted the attention from more and more researchers.
ELM works for generalized single-hidden layer feedfor-
ward networks (SLFNs). The essence of ELM is that the
hidden layer of SLFNs need not be tuned. Compared with
those traditional computational intelligence techniques,
ELM provides better generalization performance at a much
faster learning speed and with least human intervene. This
paper gives a survey on ELM and its variants, especially on
(1) batch learning mode of ELM, (2) fully complex ELM,
(3) online sequential ELM, (4) incremental ELM, and (5)
ensemble of ELM.
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1 Introduction

There exist many types of neural networks, however,
feedforward neural networks may be one of the most
popular neural networks. A feedforward neural network
consists of one input layer receiving the stimuli from
external environments, one or multi-hidden layers, and one
output layer sending the network output to external envi-
ronments. Three main approaches are usually used in
training feedforward networks:

1. Gradient-descent based (e.g. backpropagation (BP)
method [1] for multi-layer feedforward neural net-
works). Additive type of hidden nodes are most often
used in such networks. For additive hidden node with
the activation function g(x):R — R (e.g. sigmoid:
g(x) = 1/(1 + exp(—x))), the output function of the
ith node in the /th hidden layer is given by

G b x") = g@ - x"+6"), b er (1)

where a,@ is the weight vector connecting the (I — 1)th

layer to the ith node of the Ith layer and b is the bias
of the ith node of the /th layer. agl) -x(!) denotes the

inner product of vectors afl> and x(). Gradient-descent
based learning algorithms usually run much slower
than expected.

2. Standard optimization method based (e.g. support
vector machines, SVMs [2], for a specific type of
SLFNSs, the so-called support vector network). Rosen-
blatt [3] investigated perceptrons (multi-layer feedfor-
ward neural networks) half a century ago. Rosenblatt
suggested a learning mechanism where only the
weights of the connections from the last hidden layer
to the output layer were adjusted. After all the rest
weights fixed the input data are actually transformed
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into a feature space Z of the last hidden layer (cf.
Fig. 1). In this feature space a linear decision function
is constructed:

f(x) = sign (Z ﬁizi<x>> 2)

i=1

where f; is the output weight between the output node
and the ith neuron in the last hidden layer of a per-
ceptron, and z;(x) is the output of the ith neuron in the
last hidden layer of the perceptron. In order to find an
alternative solution of z;(x), in 1995 Cortes and Vapnik
[2] proposed the SVM which maps the data from the
input space to some high dimensional feature space
Z through some nonlinear mapping chosen a priori.
Optimization methods are used to find the separating
hyperplane which maximizes the separating margins of
two different classes in the feature space.

3. Least-square based (e.g. radial basis function (RBF)
network learning [4]). For RBF hidden node with
activation function g(x):R — R (e.g. Gaussian:
g(x) = exp(—x?), G(a;, b;, X) is given by

G(ay, bi,x) = g(billx —ail)), b € R* (3)

where a; and b; are the center and impact factor of the ith
RBF hidden node. R indicates the set of all positive real
values. The RBF network is a special case of SLFNs with
RBF nodes in its hidden layer (cf. Fig. 2). Each RBF
node has its own centroid and impact factor, and its
output is given by a radially symmetric function of the
distance between the input and the center. In Lowe’s
RBF network implementation [4], the centers a; of RBF
hidden nodes can be randomly selected from the training
data or from the region of training data instead of tuning,
and all the impact factors b; of RBF hidden nodes are
usually set with the same value (p. 173 of [4]). After RBF
hidden nodes parameters (a;, b;) fixed, the output weight
vector B; linking the ith RBF hidden node to the output
layer becomes the only unknown parameter which can
be resolved by least-square method.

Extreme learning machines (ELMs) were originally
developed for the SLFNs [5-7] and then extended to the
“generalized” SLFNs. Such generalized SLFNs need not be
neuron alike [8, 9]. The essence of ELM is that: different
from the common understanding of learning, the hidden
layer of SLFNs need not be tuned. One of the typical
implementation of ELMs is to apply random computational
nodes in the hidden layer, which may be independent of the
training data. Different from traditional learning algorithms
for neural networks ELM not only tends to reach the smallest
training error but also the smallest norm of output weights.
According to the neural network theory [10], for feedforward
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Fig. 2 Single-hidden layer feedforward network

neural networks reaching smaller training error the smaller
the norm of weights is, the better generalization performance
the networks tend to have. Since in ELM the hidden layer
need not be tuned and the hidden layer parameters can be
fixed, the output weights can then be resolved using the
lease-square method.

2 Learning theories of ELMs

The interpolation capability and universal approximation
capability of ELMs have been investigated in Huang et al.
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[6-9].The output function of SLFNs with L hidden nodes
can be represented by

L L
fux) =) Bigi(x) = > B:Glai, bi,x),
i=1 i=1
x € RY, B, € R" (4)

where g; denotes the output function G(a;, b;,x) of the ith
hidden node. For additive nodes with activation function
g, g; is defined as

g = G(ai,b,-,x) = g(a,- 'X—|-b,'), a; € Rd, b; €R (5)

and for RBF nodes with activation function g, g; is defined
as

gi = G(a,-,b,-,x) = g(b,HX — a,»||), a; € 1{‘17 b; € Rt (6)

In the past two decades, the interpolation and universal
approximation capabilities of SLFNs have been investi-
gated thoroughly. It was proved [11, 12] that N arbitrary
distinct samples can be learned precisely by SLFNs with
N threshold hidden nodes. Further study [13] gave a more
complete answer on the interpolation capability of SLFNs
and proved that an SLFN with at most N hidden nodes and
with any arbitrary bounded nonlinear activation function
which has a limit at one infinity can learn any N arbitrary
distinct samples with zero error. Such activation functions
include the threshold, ramp and sigmoid functions as well as
the radial basis, “cosine squasher” [14] and many non-
regular functions. Many researchers [15-21] have rigor-
ously proved in theory that given activation function
g(x) satisfying certain mild conditions there exists a
sequence of network functions {f;} approximating to any
given continuous target function f with any expected
learning error € > 0. In all these conventional neural net-
work theories, all the parameters in any f; of the network
sequence (e.g. the hidden layer parameters (a;, b;) and the
output weights f8;) are required freely adjustable. According
to these conventional neural network theories, hidden layer
parameters (a;, b;) need to be tuned properly and appro-
priate values of network parameters (e.g. (a;,b;) and B,)
need to be found for any given target function f. To mini-
mize the effort spent on adjusting hidden layer parameters
(a;,b;) has been tried in the past two decades. Instead of
adjusting all the parameters of hidden layers in all f; of the
network sequence, some researchers [22-25] suggested
incremental methods for SLFNs which adjust the parame-
ters of newly added hidden nodes and then fix them after
tuning. The parameters of the existing hidden nodes will
remain fixed and never be updated in the further learning
procedure. Hidden layer parameters in those conventional
learning models need to be adjusted at least once based on
the training samples. In contrast, all the parameters of the
hidden layer in the ELMs need not be tuned and can be

independent of the training samples [6-9]. One of the typ-
ical implementation of ELMs is that the hidden node
parameters (a;, b;) of ELM can be randomly generated. The
learning capability of extreme learning machines have been
studied in two aspects: interpolation capability [6] and
universal approximation capability [7-9].

2.1 Interpolation theorem

For N arbitrary distinct samples (x;,t;) € R? x R™, SLFNs
with L hidden nodes are mathematically modeled as

L L
Y Biax) =Y BGaibix) =0, j=1,...N (7)
i=1 i=1

That SLFNs can approximate these N samples with zero
error means that E]L:I loj — t;|| = 0, i.e., there exist (a;, b;)
and f; such that

L
ZﬁiG(ai,bi,xj) =t, j=1,...,N. (8)
The above N equations can be written compactly as:
HE=T )
where
[ h(x))
H = .
[ h(xy)
[ G(ay, b1,x1) G(ar,br,x)
= : : (10)
| G(a1,b1,xy) G(ar, br,Xn) | yor
B t
p= and T=|: (11)
Bl t L v

H is called the hidden layer output matrix of the SLFN
[13, 26]; the ith column of H is the ith hidden node
output with respect to inputs Xp,Xp,...,Xy.h(x)=
G(ay,by,x),...,g(a, by, x) is called the hidden layer fea-
ture mapping. The ith row of H is the hidden layer feature
mapping with respect to the ith input x; : h(x;). It has been
proved [6] that from the interpolation capability point of
view, if the activation function g is infinitely differentiable
in any interval the hidden layer parameters can be ran-
domly generated.

Theorem 2.1 [6] Given any small positive value € > 0,
activation function g : R — R which is infinitely differen-
tiable in any interval, and N arbitrary distinct samples
(x;,t;) € RY x R™, there exists L < N such that for any
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{a;, b}, randomly generated from any intervals of R? x
R, according to any continuous probability distribution,
with probability one, |HyxrBrm — Thsml|| <e€.

From the interpolation point of view the maximum
number of hidden nodes required is not larger than the
number of training samples. In fact, if L = N, the training
errors can be zero.

Theorem 2.2 [6] Given any activation function g : R —
R which is infinitely differentiable in any interval and
N arbitrary distinct samples (x;,t;) € R? x R™, for any
{(ai,bi)}ﬁvzl randomly generated from any intervals of
RY x R, according to any continuous probability distribu-
tion, with probability one, |HyxnPyxm — Tasml|| = 0.

From interpolation point of view, wide type of activa-
tion functions can be used in ELM, which include the
sigmoid functions, the radial basis, sine, cosine, exponen-
tial, and many other non-regular functions [13]. It may be
too strict to request that activation functions of hidden
nodes are infinitely differentiable. For example, it may not
include some important activation functions such as
threshold function: g(x) = 1,50 + Oy<¢. Threshold net-
works are very popular in real applications, especially in
digital hardware implementation. However, as threshold
function is not differentiable, researchers did not manage to
find any efficient direct learning algorithms for threshold
networks in the past two decades [27-30]. Interestingly,
from the universal approximation point of view, the above
mentioned interpolation theorem can be extended to almost
any type of nonlinear piecewise continuous function
including the threshold function, and thus an efficient direct
learning algorithm (e.g. ELM) can be applied to those cases
which cannot be handled by other learning techniques in
the past decades.

2.2 Universal approximation theorem

Huang et al. [7] proved in theory that SLFNs with ran-
domly generated additive or RBF nodes can universally
approximate any continuous target functions over any
compact subset X € R?. Let L*(X) be a space of functions
f on a compact subset X in the d-dimensional Euclidean
space RY such that [f|2 are integrable, that is,
Jx [f(x)]* dx <oo. Let L2(R?) denoted by L2 For u,v €
L?(X), the inner product (u,v) is defined by

(u,v) = /u(x)v(x) dx

X

(12)

The norm in L*(X) space is denoted as |- ||, and the
closeness between the network function f; and the target
function f is measured by the LZ(X) distance:
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I~ 11 = | [ 10 e (13)

Definition 2.1 (p. 334 of [31]) A function g(x) : R — R is
said to be piecewise continuous if it has only a finite
number of discontinuities in any interval, and its left and
right limits are defined (not necessarily equal) at each
discontinuity.

Definition 2.2 A node is called a random node if its
parameters (a, b) are randomly generated based on a con-
tinuous sampling distribution probability.

Different from the randomness mentioned in other
learning methods [4, 32, 33], all the hidden node parame-
ters (a;,b;) in ELMs can be independent of the training
samples and can be randomly generated before the training
samples observed. (Refer to [34] for the details of the
differences between ELM and Igelnik and Pao [33] and
Lowe et al. [4, 32]).

Definition 2.3 The function sequence {g; = G(a;, b;,x)}
is said randomly generated if the corresponding parameters
(a;,b;) are randomly generated from R? x R or RY x R*
based on a continuous sampling distribution probability.

Lemma 2.1 (Proposition 1 of [16]) Given g:R —
R,span{g(a-x+b): (a,b) € R! x R} is dense in L for
every p € [1,00), if and only if g is not a polynomial
(almost everywhere).

Lemma 2.2 [17] Let k : RY — R be an integrable boun-
ded function such that k is continuous (almost everywhere)
and [j k(x)dx # 0. Then span{k(*52) : (a,b) € R? x R}
is dense in LP for every p € [1,00).

Lemmas 2.1 and 2.2 show that feedforward neural net-
works with additive or RBF hidden nodes can approximate
any target continuous function provided that the hidden
node parameters (a;, b;) are tuned properly and appropriate
values are given. Lemmas 2.1 and 2.2 only show the uni-
versal approximation capability of feedforward neural
networks with additive or RBF hidden nodes, however,
how to find the suitable hidden node parameters (a;,b;)
remains open, and many tuning based learning algorithms
have been suggested in the past. Huang et al. [7] proved
that given any bounded nonconstant piecewise continuous
activation function g : R — R for additive nodes or inte-
grable piecewise continuous activation function g : R — R
(and [, g(x)dx # 0) for RBF nodes, the hidden layer of
such SLFEN need not be tuned, in fact, all the hidden nodes
can be randomly generated. SLFNs with randomly gener-
ated hidden nodes can universally approximate any target
functions. Let e; = f — f; denote the residual error function
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for the current network f; with L hidden nodes where f €
L*(X) is the target function. The output layer may have

more than one nodes, m > 1, that is, the function f is a

multi-output function: f = [f(), ... f®]". The corre-

sponding output function of the network with L hidden

nodes is f; = [fLm,..., fL(m>]T. Let Y denote the output
weight between the Lth hidden node and the jth output
node, and e’ = f — £ the residual error function of the
jth output node of the network with L hidden nodes,
j=1,...,m. In theory, we have

Theorem 2.3 [7] Given any bounded nonconstant
piecewise continuous function g : R — R for additive nodes
or any integrable piecewise continuous function g : R — R
and [, g(x)dx #0 for RBF nodes, for any continuous
target function f and any randomly generated function
sequence {gr}, imy o ||f — fi|| = O holds with probabil-
ity one if

0)
j (S 7gL .
ﬁ@:w, j=1,...m. (14)
lgc

Theorem 2.3 can be further extended from additive or RBF
hidden nodes cases to “generalized” SLFNs [8, 9]. Given a
type of piecewise computational hidden nodes (possibly
not neural alike nodes), if SLFNs can work as universal
approximators with adjustable hidden parameters, from a
function approximation point of view the hidden node
parameters of such “generalized” SLFNs can actually be
randomly generated according to any continuous sampling
distribution. In theory, the parameters of these SLFNs can
be analytically determined by ELM instead of being tuned.
Tuning is actually not required in such generalized SLFNs
which include sigmoid networks, RBF networks, trigono-
metric networks, threshold networks, fully complex neural
networks, high-order networks, ridge polynomial networks,
etc.

Theorem 2.4
continuous function g : R — R, if span{G(a, b,x) : (a,b) €

[8, 9] Given any nonconstant piecewise

RY x R} is dense in L, for any continuous target function
f and any function sequence {g.(x) = G(a.,b,x)} ran-
domly generated based on any continuous sampling dis-
tribution, imy . ||f — fL|| = O holds with probability one
if the output weights P; are determined by ordinary least
square to minimize ||f(x) — S5, B.gi(x)].

Theorem 2.4 means that ELM with fixed network
architectures [5, 6, 35, 36] where the output parameters are
determined by ordinary least square can work as universal
approximators if only the activation function g is noncon-
stant piecewise and span{G(a,b,x) : (a,b) € R? x R} is
dense in L?.

3 ELM

The essence of ELM is that:

1. The hidden layer of ELM need not be iteratively tuned
[5, 6].

2. According to feedforward neural network theory [10],
both the training error ||Hf — T|| and the norm of
weights || || need to be minimized [5, 6].

3. The hidden layer feature mapping need to satisfy the
universal approximation condition (Theorems 2.3 and
2.4) [7-9].

According to Theorems 2.1 and 2.4 the hidden nodes
can be randomly generated, the only unknown parameters
in SLFNs are the output weights vectors f; between the
hidden layer and the output layer, which can simply be
resolved by ordinary least-square directly.

3.1 Basic ELM [5, 6]

Hidden node parameters (a;,b;) remain fixed after ran-
domly generated. To train an SLFN is simply equivalent to

finding a least-squares solution ﬂ of the linear system
Hf=T:

HHﬁ—ﬂFﬂ%Mmﬁ—TH (15)

If the number L of hidden nodes is equal to the number
N of distinct training samples, L = N, according to
Theorem 2.1 matrix H is square and invertible when
hidden node parameters (a;, b;) are randomly chosen, and
thus SLFNs can approximate these training samples with
zero error.However, in most cases the number of hidden
nodes is much less than the number of distinct training
samples, L < N,H is a nonsquare matrix and there may
not exist a;,b;,B; (i=1,...,L) such that Hf = T. The
smallest norm least-squares solution of the above linear
system is:

p=HT (16)

where H' is the Moore—Penrose generalized inverse of
matrix H [37, 38]. Thus, ELM can be summarized as
follows:

Algorithm ELM: Given a training set ® = {(x;,t;)|x; €
R t; cR" i=1,...,N}, hidden node output function
G(a;, b;,x), and hidden node number L,

step 1 Randomly generate hidden node parameters
(ai,bi),i = 1, . .,L.

step 2 Calculate the hidden layer output matrix H.

step 3 Calculate the output weight vector f :

B=H'T (17)
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ELM algorithm can work with wide type of activation
function. Many popular learning algorithms do not deal
with threshold networks directly. Instead some analog
networks are used to approximate threshold networks such
that gradient-descent method can finally be used [27].
However, ELM can be used to train threshold networks
directly [36]. Different methods can be used to calculate
Moore—Penrose generalized inverse of a matrix: orthogonal
projection method, orthogonalization method, iterative
method, and singular value decomposition (SVD) [38].

3.2 Random hidden layer feature mapping based ELM
[39]

The orthogonal projection method can be efficiently used
in ELM [39]: Hf = (HTH)ilHT if H'H is nonsingular or
H' = HT (HHT)71 if HH” is nonsingular. According to the
ridge regression theory [40], it was suggested [39, 41] that
a positive value 1/J is added to the diagonal of H'H or
HH” in the calculation of the output weights B. The
resultant solution is stabler and tends to have better gen-
eralization performance. That is, in order to improve the
stability of ELM we can have

—1
ﬁ:HTGJrHHT) T (18)

and the corresponding output function of ELM is:
I ~1
f(x) = h(x)p = h(x)H" (7 + HHT> T (19)
A
Or we can have
I T - T
B= IJF HH) HT (20)
and the corresponding output function of ELM is:
I —1
f(x) = h(x)p = h(x) <7 + HTH> H'T (21)
A

Huang et al. [39] shows that the solutions (18) and (20) are
actually consistent to minimize |[Hp —T|* + 2||B|%,
which is the essential target of ELM as mentioned before.
Thus, ELM algorithm can be rewritten as follows:
Algorithm ELM: Given a training set X = {(x;,t;)|x; €
R/, t; cR",i=1,...,N}, hidden node output function
G(a;, b;, x), and hidden node number L,

step 1 Randomly generate hidden node parameters
(a;, b),i=1,...,L.

step 2 Calculate the hidden layer output matrix H.

step 3 Calculate the output weight vector f :
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-1
p=HT G + HHT> T (22)
or

I -1
B= <I + HTH) H'T (23)

In these implementations, the condition on the number
of hidden nodes can be mild, it does not closely depend on
the number of training samples N. It works for both the
cases L < N or L > N. This is different from the interpo-
lation theorem which requires L < N (Theorem 2.1), but
consistent to the universal approximation theorem (Theo-
rem 2.4). Figure 3 shows a classification boundary
obtained by ELM for a binary-class case. Formula (18) is
used in this testing case and the number of hidden nodes
L is much larger than the number of training samples. Toh
[41] and Deng et al. [42] studied such regularization
enhancement under sigmoid additive type of SLFNs. Deng
et al. [42] and Man et al. [43] focused on obtaining the
analytical solution (21) based on optimization methods.
Toh [41] proposed a corresponding total error rate based
multi-class solution of ELM (TER-ELM). Miche et al. [44]
studied ELM with a cascade of two regularization penal-
ties. Huang et al. [39] further extended this study to gen-
eralized SLFNs with different type of hidden nodes (feature
mappings) as well as kernels and showed that the simple
unified algorithm of ELM can be obtained for regression,
binary and multi-label classification cases which, however,
have to be handled separately by SVMs and its variants
[2, 45-49].

3.3 Kernel based ELM [39]
Huang et al. [39] also studied the kernel based ELM. If the

hidden layer feature mapping h(x) is unknown to users, one
can define a kernel matrix for ELM as follows:

Fig. 3 Classification boundary obtained by ELM for a binary class
classification: L = 10* and 2 = 10°
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Qe = HH : Qpy; = h(x;) - h(x;) = K(x,.x)) (24)

Then the output function of ELM (19) can be written
compactly as:

f(x) =h(x)H” G + HHT> _lT
K(x,x1)

I ~1
= (1 + QELM) T
K(x,xy)

In this specific kernel implementation of ELM, the hidden
layer feature mapping h(x) need not be known to
users, instead its corresponding kernel K(u, v) (e.g.
K(u,v) = exp(—y|lu — v||*)) is given to users. The number
of hidden nodes L (the dimensionality of the hidden layer
feature space) need not be specified either. Thus, the ELM
algorithm can be rewritten for the kernel case as follows:
Algorithm ELM (single-step kernel version): Given a
training set N = {(x;,t;)|x; € R t; e R",i=1,...,N},
kernel K(u, v): Calculate the output function:

K(Xaxl) I

f(x) = : <+QELM)1T

A (26)
K(x,xy)

It can be seen that kernel based ELM algorithm can be
implemented in a single learning step. Frénay and
Verleysen [50, 51] studied the kernel implementation of
ELM if h(x) is known to users. If the hidden layer feature
mapping h(x) is known to users, Frénay and Verleysen [51]
defined the ELM kernel as

(27)

A parameter-insensitive kernel with analytic form can then
be obtained for SVM for regression, which significantly
reduces the computational complexity. We conjecture that
Frénay and Verleysen’s ELM kernel [51] can work for
SVM and its variants as well as in (25). All the above
mentioned can be applied in regression, binary and multi-
label classification applications directly. ELMs can be
applied to complex space as well.

4 Fully complex ELM

In high speed digital communication systems, equalizers
are very often used at receivers to recover the original
symbols from the received signals [34, 52]. Two conven-
tional approaches are usually used for solving equalization
problems.

1. Real-valued neural network models such as feedfor-
ward neural networks, RBF networks and recurrent
neural networks.

2. Complex-valued neural networks: this approach has
attracted considerable attention in channel equalization
applications in the past 15 years [53-55]. Split-com-
plex activation (basis) functions consisting of two real-
valued activation functions, one processing the real
part and the other processing the imaginary part, have
been traditionally employed in these complex-valued
neural networks.

Instead of using split-complex activation function,
extreme learning machine can use fully complex activation
function directly. Li etal [34] proved the universal
approximation capability of extreme learning machine with
fully complex activation function:

Theorem 4.1 [34] Given any complex continuous dis-
criminatory or any complex bounded nonlinear piecewise
continuous function ¢ : C — C, for any target complex
continuous function f : C¢ — C and any randomly gener-
ated  function sequence {g; =[], o(ay -z+by)},
limy o [|f — 12|l = O holds with probability one if

()
j er 1,8
ﬁg):<L1 L)

2 (28)
el

, j=1,...,m.
When the network architecture is fixed (with fixed L),
from Theorem 4.1 we have

Theorem 4.2 [34] Given any complex continuous dis-
criminatory or any complex bounded nonlinear piecewise
continuous function ¢ : C — C, for any continuous target
function f:C? — C and any function sequence {gr =
[1%,0(ap -2+ b))} randomly generated based on any
continuous sampling distribution probability, lim;_,« ||f —
7|l = 0 holds with probability one if the output weights B,
are determined by ordinary least square to minimize

1 (2) = 3221 Bigi(2)]-

Thus, the ELM algorithms introduced in Sect. 3 can be
linearly extended to the complex domain. Compared to
others equalizers, ELM can obtain much lower symbol
error rate (SER) and provide parsimonious structures for
applications in the complex domain [52].

5 Online sequential ELM (OS-ELM)

ELM algorithms introduced in Sect. 3 learn training sam-
ples only after all training samples are ready. In many
industrial applications training data may come one by one
or chunk by chunk. In these cases, on-line sequential

@ Springer



114

Int. J. Mach. Learn. & Cyber. (2011) 2:107-122

learning algorithms are preferred over batch learning
algorithms as sequential learning algorithms do not require
retraining whenever a new data is received. Sequential
learning is difficult to be implemented for feedforward
neural networks with additive (e.g. [56]) or RBF hidden
nodes [57-64]. Most of the conventional online sequential
learning algorithms have several parameters for users to
specify and it is very time-consuming to tune those
parameters. OS-ELM [65] is a simple and efficient online
sequential learning algorithm that can handle both additive
and RBF nodes in a unified framework. OS-ELM can learn
the training data not only one-by-one but also chunk by
chunk (with fixed or varying length) and discard the data
for which the training has already been done. The training
observations are sequentially presented to the learning
algorithm (one-by-one or chunk-by-chunk with varying or
fixed chunk length). A single or a chunk of training
observations is discarded and may not be used any more as
soon as the learning procedure for that particular obser-
vation(s) is completed. According to Sect. 3, one of the
solutions of the output weight vector f is:

p=HHH'T (29)

Sequential implementation of the least-squares solution of
Eq. 29 results in the OS-ELM which uses the recursive
least squares algorithm [66].

OS-ELM Algorithm: [65]

step 1 Initialization Phase: Initialize the learning
using a small chunk of initial training data Xy =
{(x, t;) ?]:01 from the given training set N =

{(X,‘,t,‘)‘X,‘ S Rn,tl‘ S R’"’i: 1,.. .}, Ny > L.

(a) Randomly generate the hidden node param-
eters (a;, b;),i=1,...,L.
(b) Calculate the initial hidden layer output
matrix Hy:
G(al,bl,xl) G(aL,bel)
H, = . .

G(ahbl,XNO) G(aL7bL7XN())

NoxL

(30)

(c) Estimate the initial output weight O =
PoH{ T, Py = (HHy) ™' and
To=[ti,....ty,)

(d) Setk=0.

where

step 2 Sequential Learning Phase:

(a) Present the (k + 1)th chunk of new obser-

Ny = {(t)}Z<ZN )

vations: ,
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where N, ; denotes the number of observa-
tions in the (k + 1)th chunk.

(b) Calculate the partial hidden layer output
matrix Hy,, for the (k 4+ 1)th chunk of data

Niq1:
G(al,bhx - |> G(aL.bL,x Cy .1)
Hy = (:E':” ’) <:Z’:” '>
G(a\.hl‘xZ’i\(: N’> G(a,,.h,,,xzti, \) .
r (31)
Set Trey = |t it .
k+1 [ (ij:nN,-)Jrl’ ) ZI+0M]
(¢) Calculate the output weight p(kH) .
Py =P — PH[ (14 H PH], ) He Py
B = g0 L Py HY | (Trgy — Hep 1 BY)
(32)

(d) Setk=k+ 1. Go to step 2a.

Seen from the above OS-ELM algorithm, OS-ELM and
ELM can achieve the same learning performance (training
error and generalization accuracy) when rank(Hy) = L. In
addition, if Nog = N, OS-ELM also becomes the batch
ELM. In OS-ELM, the chunk size of incoming training
data need not be constant. When the training data is
received one-by-one instead of chunk-by-chunk, N1 = 1,
formula (32) has the following simple format (Sherman-
Morrison formula [67]):

Peh(xii1)h7 (xi11)Py
1+ h" (X 1)Peh(xi11) (33)
B = BY 4 Prih(xic) (= b (xi1) )

where h(Xk+1) = [G(al, bl,Xk+1) tee G(aL, bL,Xk+1)].
OS-ELM is efficient in time-series prediction which is
required in many real-world problems. The chaotic
Mackey—Glass differential delay equation [68] is one of
the classical benchmark time series problems in literature:

dx(1) _ ax(t — 1)
dt 14+ x19(t — 1)

Py =P —

— bx(t) (34)

fora = 0.2, b = 0.1, and t = 17. Integrating the equation
over the time interval [r,7+ Ar] by the trapezoidal rule
yields:

x(t+Ar) = zzleA;x(t)
alt x(t+ At —1) x(t—r1)
24 bAr |[1+x100+Ar—1) 14x0(—1)
(35)

The time series is generated under the condition
x(t — 1) =0.3 for 0 <t <t and predicted with v = 50
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Fig. 4 Time-series prediction: the approximated curve obtained by
OS-ELM. OS-ELM is trained by the training observations is from
t=1to t =4, 000, and the predicted period is from ¢ = 4,001 to
t = 4,500

sample steps ahead using the four past samples: s,_,,
Sn—v—6s Sn—v—12, and s,,_,_1g. Hence, the nth input—output
instance is:

T
Xy = [snfuasnfufévsnfvfl%sn717718]
Yn = Sn

Figure 4 shows the approximated curve of OS-ELM in this
time-series prediction. In this simulation, Ar = 1, and the
training observations is from r=1 to = 4,000 and
the testing observations from ¢ = 4,001 to t = 4,500. The
number of hidden nodes of OS-ELM is L = 120.

6 Incremental ELM (I-ELM)

The universal approximation capability of ELMs was
proved using incremental learning method where the hidden
nodes are added one by one [7-9]. The proof itself is indeed
a practical incremental constructive method, which actually
shows an efficient way to construct an incremental feed-
forward network (referred to as I-ELMs). Different from
other incremental learning algorithms which may only work
with some type of hidden nodes (e.g. resource allocation
network and its variants [57, 58, 60, 63, 64] work only for
RBF networks), I-ELM can work well with a wide type of
activation functions no matter whether they are sigmoidal or
nonsigmoidal, continuous or noncontinuous, and differen-
tiable or non-differentiable. The traditional gradient-des-
cent based learning algorithms cannot be applied to
networks with non-differential activation functions such as
threshold networks since the required derivatives are not

available. These conventional methods may also face local
minima issues. Although many other incremental learning
algorithms have been proposed in literature [57-60, 63, 64],
unlike I-ELM the universal approximation capability of
these previous learning algorithms has not been proved.
Different from other conventional incremental learning
algorithms which may have several parameters for us to
specify, I-ELM has no parameters for users to specify
except the maximum network architecture and the expected
accuracy. Experimental results show that I-ELM outper-
forms other learning algorithms (including support vector
regression (SVR) [69, 70], stochastic gradient-descent BP
[56], and incremental RBF networks (RAN [57], RANEKF
[58], MRAN [59, 60], GAP-RBF [63], GGAP-RBF [64]) in
terms of generalization performance and learning speed.
I-ELMs can be implemented in different ways:

1. Basic I-ELM Every time only one hidden node is
randomly generated and added to the existing network
[7, 8].

2. Enhanced I-ELM Every time k hidden nodes are
randomly generated. However, among the k randomly
generated hidden nodes only the most appropriate
hidden node will be added to the existing network [9].

Compared to the original I-ELM [7, 8], this enhanced
implementation [9] will produce a more compact network
architecture and the learning can be completed in a faster
convergence rate and learning speed. I-ELM is a specific
case of EI-ELM when k = 1.

Theorem 6.1 [9] Given a SLFN with any nonconstant
piecewise  continuous  hidden nodes G(a, b, X), if
span{G(a, b,x) : (a,b) € R x R} is dense in L?, for any
continuous target function f and any randomly generated

function sequence {gr} and any positive integer
k, limi_ ||f —f7]| = O holds with probability one if

ﬁg)*:@7 j=1...m (36)
gzl
where  f" =Yg, e =10 /" and

g = {g|ming 1yt <i< i || (FY ) = Bgill}-

According to formula (36), the weight ﬁ(L’) between the
Lth newly added node and the jth output node should be
(e 8

llg; I°
samples are available, the target function f(x) is unknown
and the exact functional form of ei’);ﬁ is not available, thus,
formula (36) cannot be calculated explicitly. Instead, for-
mula (36) can be estimated based on the training samples:

CEV-RT Y eV (p)Glar, br,x)

== v
ﬁ . ﬁ Zp:] G2(3L7 va Xp)

chosen as . In real applications, only the training

(37)
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where ¢”(p) is the corresponding residual error of the jth
output node before the Lth new hidden neuron is added.
h= [G(ap, b, x1), .. .,G(aL,bL,xN)]T is the activation
vector of the newly added node for all the N training sam-
ples and EV) = [el)(1),...,e"(N)]" is the residual vector
the jth output node with respect to all the N training
samples before this new hidden node added. Let
E=[E"Y, . .  Em.

EI-ELM Algorithm: Given a training set N =
{(x;,t;)]x; € R% t; € R,i=1,...,N}, hidden node output
function G(a, b, X), maximum number L,,, of hidden
nodes, maximum number k of trials of assigning random
hidden nodes at each step, and expected learning
accuracy e,

step 1 Initialization: Let L = 0 and residual error E = T.
step 2 Learning step:
while L < L, and ||[E|| > €

(a) Increase by 1 the number of hidden nodes
L L=L+1.

(b) fori=1:k%k

(i) Assign random parameters (a, b)) for the
new hidden node L according to any contin-
uous sampling distribution probability.

(ii) Calculate the output weight ﬁg; for the new
hidden node:

) E(/).ﬁT,
O =W i1 m (38)
(i) h hT

(ORE()

(iii) Calculate the residual error after adding
the new hidden node L:

E)) =EY — g0k j=1,...,m (39)

endfor
() Let " ={ilminj<;<;||Eu|l}  where E; =
[E&), . .,EEI’;)]. Set E=Eg a =a;),, b =

b(i*)) and I;L = ﬁ(f)
endwhile

Before learning, there is no node in the network and the
initial residual error is set as the expected target vector T of
the training data set as shown in step 1. Learning will stop
when the number L of hidden nodes has exceeded the
predefined maximum number L,,,, or the residual error E is
small enough (||E|| <e). step 2b randomly generates k new
hidden nodes and step 2c will choose and add the most
appropriate hidden node of the k randomly generated hid-

den nodes. ﬁ(i) in formula (38) is the activation vector of
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the ith trial of hidden node for all the N training samples
and /383 is the corresponding output weight between the ith
trial of hidden node and the jth output node. EY} of formula
(39) is the residual error vector of the jth output node if the
ith trial of hidden node is added. E¥ in the right hand of
formula (39) represents the earlier residual error vector
corresponding to the jth output node before the new node
added.

7 ELM ensembles

The idea of neural network ensemble was proposed by
Hansen and Salamon [71] . Their work showed that a
single network’s performance can be expected to improve
using an ensemble of neural networks with a plurality
consensus scheme. This technique has been spread widely
after that. The most prevailing approaches for training
neural networks comprised the ensemble are Bagging
[72] and Boosting [73-75]. An integration of several
ELMs was proposed by Sun et al [76] to predict the
future sales amount. Several ELM networks were con-
nected in parallel and the average of the ELMs’ outputs
was used as the final predicted sales amount. The
resulting ensemble has better generalization performance.
Heeswijk et al. [77] investigated the adaptive ensemble
models of ELM on the application of one-step ahead
prediction in (non-)stationary time series. It was verified
that the method did work on stationary time series and the
capability of the method on non-stationary time series
was tested. The empirical studies showed that the adap-
tive ensemble model achieved an acceptable testing error
with good adaptivity. Heeswijk et al. [78] also studied
ELM ensemble for large scale regression applications.
Furthermore, network ensembles are potentially impor-
tant methods to perform sequential learning [79, 80].
Network ensemble consists of a few of single networks
that may have different adaptabilities to the new data.
Some of the networks in the ensemble may adapt faster
and better to the new data than others, which could make
the ensemble overcome the problem of networks that
could not adapt well to the new data. Lan et al. [81]
proposed an integrated network structure, which is called
ensemble of online sequential ELM (EOS-ELM). EOS-
ELM comprised several OS-ELM networks. The average
value of outputs of each OS-ELM in the ensemble was
used as the final measurement of network performance.
The simulation results proved that EOS-ELM is more
stable than original OS-ELM in each trial of simulation
for most problems.
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8 Pruning ELM

Rong et al. [82] presented a pruned ELM (referred to as
P-ELM) as a systematic and automated method for ELM
classifier network design. It starts with a large network and
then eliminates the hidden nodes that have low relevance to
the class labels by using statistical criteria, namely, the Chi-
squared (x*) and information gain (IG) measures. P-ELM
mainly focuses on pattern classification applications.
Another pruning algorithm called optimally-pruned ELM
(referred to as OP-ELM) was proposed by Miche et al. [83].
The OP-ELM methodology has three steps: (1) build the
SLFN using the original ELM algorithm; (2) rank the hidden
nodes by applying multi-response sparse regression algo-
rithm (MRSR) [84]; and (3) select the hidden nodes through
leave-one-out (LOO) validation. OP-ELM is applicable for
both regression and classification applications.

9 Constructive model selection of ELM
9.1 Error minimized ELM

Error minimized ELM (EM-ELM) [85] is an error mini-
mization based method in which the number of hidden
nodes can grow one-by-one or group-by-group until opti-
mal. The approach can significantly reduce the computa-
tional complexity and its convergence was proved as well.
In EM-ELM, the hidden nodes are randomly generated and
added to the network sequentially. Further study of EM-
ELM shows [86] that some newly added hidden nodes may
be more efficient in reducing the residual error as compared
to other hidden nodes. Hence, an enhancement of EM-
ELM (referred to as EEM-ELM) [86] was proposed by
applying random search method. In the enhancement of
EM-ELM, the hidden node is added to the network one-by-
one. At each incremental learning step, k hidden nodes are
randomly generated and the hidden node that leads to
highest residual error reduction will be added to the net-
work, and then the output weights are updated incremen-
tally in the same way of original EM-ELM.

9.2 Stepwise forward selection based constructive
ELM for regression

Instead of using a simple selection method that randomly
generates a group of hidden nodes in each step of the training
process (i.e. like in EEM-ELM), one could randomly gen-
erate a large number of hidden nodes as the candidate res-
ervoir and then pick the hidden node one-by-one via a
stepwise forward selection method. The fast construction
algorithm (FCA) proposed in [87] is a constructive hidden
node selection method for ELM based on orthogonal least

squares (OLS). OLS selects a suitable set of variables to form
the subset model from a large set of candidates. At each step,
the net decrease in the residual error is maximized. The key
advantage of the algorithm is that it can explicitly identify the
net contribution of the newly added node without solving the
whole least-squares problem, which significantly reduces the
computational complexity. However, OLS cannot guarantee
an optimal solution because it is greedy and on the basis of a
local optimization [88]. By modifying the classic forward
selection algorithm, a constructive hidden nodes selection
method for ELM (CS-ELM) [89] was proposed,which is less
greedy and without any matrix decompositions. At each step
of CS-ELM, the hidden node with an output that has the
highest correlation with the current residual is selected.

9.3 Two-stage ELM for regression

It is found [90] that the parsimonious network structure is
probably missed by some greedy selection methods due to
the fact that the hidden nodes added earlier may become
insignificant when other hidden nodes are added to the net-
work. In FCA [87], the researchers solved this problem by
adding a fine tuning phase after the forward selection, which
reviewed the hidden nodes selected in forward selection
phase and replaced the selected hidden nodes with candidate
nodes that achieve more contribution. Inspired by the above
mentioned CS-ELM and the FCA algorithm, a two-stage
algorithm was proposed and it is called TS-ELM [90]. The
first stage attempts to select hidden nodes by forward
recursive algorithm and the selection is terminated by the
final prediction error (FPE) criterion; while the second stage
is a backward refinement phase that removes the insignifi-
cant hidden nodes by applying LOO method.

10 SVM with ELM feature mapping

SVM [2] has become one of the most popular classifiers.
SVM has been extensively applied in wide type of
applications. As explained in Cortes and Vapnik [2],
SVM can be seen as a specific type of SLFNs, the so-
called support vector networks. A multi-layer feedfor-
ward network (cf. Fig. 1) can be considered to transform
the input data into a feature space Z of the last hidden
layer [2, 3]. In order to find a solution of z;(x) where
z;,(x) is the activation function of the ith node of the last
hidden layer, Cortes and Vapnik [2] proposed the support
vector machine which maps the data from the input space
to some high dimensional feature space Z through some
nonlinear mapping ¢(x) : X; — ¢(x;). Standard optimi-
zation methods are used to find the separating hyperplane
which maximizes the separating margins of two different
classes in the feature space:
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- Lg%
minimize: Lp = 3 18I~ + A;@-

subject to: ;(B - d(x;) +b) >1— &,
&>0, i=1,..,N

i=1,...N

(40)

where / is a user specified parameter and provides a tradeoff
between the distance of the separating margin and the training
error. Vectors x; for which #(f - ¢(x;) + b) = 1 is termed
support vectors. The hyperplane w - ¢(x) + b = 0 separates
the training data with a maximal margin in the feature space. It
maximizes the distance 2/|| B|| between two different classes
in the feature space Z. To train such a SVM is equivalent to
solving the following dual optimization problem:
1NN N
minimize: Lp = EZ 1 titio 0 (X;) - p(x;) — Z o

i=1 j= i=1

N
subject to: Ztioc[ =0 0<o; <A i=1,...,N
i=1
(41)

where each Lagrange multiplier «; corresponds to a training
example (x,, ;). Kernel functions K(u,v) = ¢(u) - ¢(v) are
usually used in the implementation of SVM learning algorithm:

1NN N
minimize: Lp = 3 Z Z 1t K (Xi, X)) 030t — Z %
i=1

i=1 j=1

. (42)
subject to: Zt,a,- =0 0<o; <A i=1,...,N

i=1
The SVM kernel function K(u, v) needs to satisfy Mercer’s
condition [2]. The decision function of SVM is:

F(x) = sign (Z o1, K (%, X5) + b) (43)

s=1

Liu et al. [91] and Frénay and Verleysen [50] made a
significant contribution showing that (random) ELM
kernels can be used in SVM and better generalization can
be achieved. Their methods keep the same optimization
methods as the conventional SVM. Further study [92]
showed that SVM’s optimization constrains can be milder
if ELM kernel is used, and the optimal solution can be
obtained more efficiently. ELM is to minimize the training
error as well as the norm of the output weights [5, 6]:

N
B -h(x:) —
=l (44)

Minimize:

and

Minimize: |||

For the binary classification applications, the decision
function of ELM is: f(x) = sign(>_", B;G(a;, b, X)) =
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sign(p - h(x)). In ELM, to minimize the norm of the output
weights ||B|| is actually to maximize the distance of the
separating margins of the two different classes in the ELM
feature space: 2/||f||, which is similar to SVM’s target.
From the standard optimization theory point of view, the
objective (44) of ELM in minimizing both the training
errors and the output weights can be written as:

L Lo s
M cLp=— A Vi
inimize: Lp 2||,BH + E_l ¢
. (45)
Subject to: ;B-h(x;))>1-¢&;, i=1,...,N
éiZO, lzl,,N

which is very similar to SVM’s optimization problem (40)
with two main differences:

1. Different from the conventional SVM, the randomness
can be adopted in the ELM mapping h(x), that is, all
the parameters of h(x) are chosen randomly.

2. The bias b is not required in the ELM’s optimization
constrains since in theory ELM with h(x) has universal
approximation capability and the separating hyperplane
in the ELM feature space tends to pass through the
origin. In SVM, the feature mapping ¢(x) is unknown
and it is not required to satisfy universal approximation
condition. However, in ELM, the feature mapping
h(x) is required to satisfy universal approximation
conditions (Theorems 2.3 and 2.4).

Based on the Karush—Kuhn-Tucker (KKT) conditions
[93], the equivalent dual optimization problem can be
obtained:

o P N
minimize: Lp = 5; ; titioyoh(x;) - h(x;) — ; o
subject to: 0<o; <A, i=1,..,N

(40)

As the separating hyperplane tends to pass through the
origin in the ELM feature space, the above dual ELM
optimization problem does not have the condition
Zfiltiai =0, Vi, which is, however, required in the
conventional dual SVM optimization problem (41). With
the ELM kernel (24) we have:

1NN N
minimize: Lp = —Z 1K (Xi, Xj) 004 — Z o
245 =1 i=1 (47)
subject to: 0<o; <A, i=1,....N
The decision function of ELM is defined as
Ny
f(x) = sign (Z ot K (X, x3)> (48)
s=1
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Experimental results [92] have shown that the generaliza-
tion performance of ELM is less sensitive to the user
specified parameters especially the number of hidden
nodes. Thus, compared to SVM, users can use ELM easily
and effectively by avoiding tedious and time-consuming
parameter tuning.

11 Conclusions

As a learning technique, ELM has demonstrated good
potentials to resolving regression and classification prob-
lems. Recently, ELM techniques have received consider-
able attention in computational intelligence and machine
learning communities, in both theoretic study and appli-
cations [41-44, 50, 51, 78, 80, 91, 94—-119]. Fundamentals
of ELM techniques are composed of twofold: universal
approximation capability with random hidden layer, and
various learning techniques with easy and fast implemen-
tations. The following issues on ELM remain open and
may be worth investigating in the future.

1. As observed in experimental studies [6, 39], the
performance of ELM is stable in a wide range of
number of hidden nodes. Compared to the BP learning
algorithm, the performance of ELM is not very
sensitive to the number of hidden nodes. However,
how to prove it in theory remains open.

2. One of the typical implementations of ELM is to use
random nodes in the hidden layer and the hidden layer
of SLFNs need not be tuned. It is interesting to see that
the generalization performance of ELM turns out to be
very stable. How to estimate the oscillation bound of
the generalization performance of ELM remains open
too.

3. It seems that ELM performs better than other conven-
tional learning algorithms in applications with higher
noise. How to prove it in theory is not clear.

4. Experimental results [6, 39, 92] show that compared to
backpropagation algorithm, SVM and least-square
SVM (LS-SVM) ELM usually achieve similar or
better generalization in regression and classification
applications. How to prove it in theory is still an open
problem.

5. ELM provides a batch learning kernel solution (25)
which is much simpler than other kernel learning
algorithms such as LS-SVM [49]. It is known that it is
not straightforward to have an efficient online sequen-
tial implementation of SVM and LS-SVM. However,
due to the simplicity of ELM, it may be easier to
implement the online sequential variant of the kernel
based ELM (25).
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