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Graph clustering is an area in cluster analysis that looks for groups of related vertices in a graph. Due to
its large applicability, several graph clustering algorithms have been proposed in the last years. A partic-
ular class of graph clustering algorithms is known as spectral clustering algorithms. These algorithms are
mostly based on the eigen-decomposition of Laplacian matrices of either weighted or unweighted graphs.
This survey presents different graph clustering formulations, most of which based on graph cut and par-
titioning problems, and describes the main spectral clustering algorithms found in literature that solve
these problems.
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1. Introduction

Clustering is an unsupervised technique concerned with the
grouping of related objects without taking their class or label into
account. It is expected that objects belonging to the same cluster
are more similar to each other than to objects belonging to differ-
ent clusters. Cluster analysis has been applied to many areas, like,
for example, gene expression analysis (Huttenhower et al., 2007),
natural language processing (Ushioda and Kawasaki, 1996), galaxy
formation (White and Frenk, 1991) and image segmentation (Wu
and Leahy, 1993). Due to the wide range of applications, many
clustering algorithms based on distinct principles have been
proposed.

Clustering algorithms can be roughly divided into two main
groups: hierarchical and partitioning algorithms. This division af-
fects the solution representation and the algorithmic approach
for generating clusters. In the traditional hierarchical algorithms,
clusters are gradually formed through agglomerations (agglomera-
tive algorithms) or divisions (divisive algorithms). These algo-
rithms create a tree structure where either subgroups or
supergroups of clusters are progressively built. Partitioning clus-
tering algorithms split the dataset into k 6 n groups, where n is
the number of objects in the dataset. Solutions are obtained by
moving objects between clusters until a stop criterion is satisfied.
Each solution is assessed by a given objective function.

In the last years, graph clustering algorithms have become very
popular. According to Schaeffer (2007), graph clustering groups
ll rights reserved.
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vertices of a graph into clusters, based on the edge structure of
the graph. The resulting vertex partition should have the property
that within each cluster the vertices are highly connected whereas
there are only few edges between clusters.

Graph clustering has been thoroughly studied and many differ-
ent approaches have been investigated (Huttenhower et al., 2007).
These approaches either explicitly adopt the concepts of graph the-
ory in their formulations or just manipulate the graph-based data
structure. In graph clustering, graph theory can provide the neces-
sary definitions and mathematical formalism, resulting in an
important support for the analysis of graph clustering models. Re-
views on graph clustering can be found in Cormack (1971), Hansen
and Jaumard (1997), Schaeffer (2007), Filippone et al. (2008). Spe-
cifically, Schaeffer (2007) discusses some of the most frequently
used approaches, reporting many publications on this issue.

The main graph clustering formulations are based on graph cut
and partitioning problems (Alpert et al., 1999; Chan et al., 1994;
Shi and Malik, 2000). An alternative to heuristically solve these
problems is to use spectral clustering algorithms. In the last dec-
ades, there has been a growing interest in spectral clustering algo-
rithms, mainly because of their efficiency and mathematical
elegance. Moreover, they have the advantage of providing lower/
upper bounds for minimization/maximization graph cut and parti-
tioning problems, due to their spectral relaxation. Examples of
spectral clustering algorithms can be found in Ng et al. (2002), Sae-
rens et al. (2004), Ding et al. (2005), Forman et al. (2005), Filippone
et al. (2008). Another research issue related to graph clustering is
clustering of graphs. This issue is concerned with finding clusters
in a set of graphs based on their structural similarity (Schaeffer,
2007). In order to keep the focus of this survey, this issue will
not be covered in the text.

http://dx.doi.org/10.1016/j.ejor.2010.08.012
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http://www.sciencedirect.com/science/journal/03772217
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The goal of this review is to survey the main spectral clustering
algorithms found in literature for graph cut and graph partitioning
problems. All the spectral graph theory necessary to understand
these algorithms will be presented either before or during their
descriptions. Moreover, important basic graph concepts are pre-
sented for those who are not familiar with graph notations and
representations.

This survey is organized as follows. Section 2 presents graph
concepts, definitions, terminologies and properties related with
the issues covered in this text. Section 3 presents graph cut prob-
lems important for clustering. Section 4 shows the most represen-
tative spectral clustering algorithms. Section 5 presents
experimental comparisons of different types of spectral clustering
algorithms. Finally, Section 6 concludes the survey discussing fu-
ture trends in spectral clustering algorithms research.
2. Graphs and Laplacians

Let G = (V,E) be a graph, where V is a non empty set of n nodes
(or vertices) and E is a set of m edges. Each edge in E can be defined
by the pair (vi,vj), where vi and vj are nodes of G, i.e., elements from
V. A subgraph of G is a graph G

0
, G

0
= (V

0
,E
0
), where V

0 � V and E
0 � E.

A spanning subgraph of G is a subgraph that contains all nodes of G.
In this survey, we will only deal with undirected graphs, i.e., graphs
without edge directions.

The adjacency matrix of G is a binary matrix, given by A = [aij]n�n,
where aij = 1, if there is an edge connecting nodes vi and vj, and 0,
otherwise. Moreover, weights may be associated with the graph’s
edges, resulting in weighted graphs. The edge weights are repre-
sented by a weight matrix, W = [wij]n�n, where wij 2 R represents
the edge weight between nodes vi and vj. If the edges of a graph
have no weight, the graph is known as an unweighted graph. In
an undirected graph, the degree of a node is given by the number
of its adjacent edges. In an undirected weighted graph, the degree
of a node can also be defined as the sum of the weights of its adja-
cent edges.

A path in a graph is a sequence of nodes with an edge connect-
ing every two consecutive nodes. A connected component is a sub-
graph with a path connecting any pair of nodes. When there is at
least one path where one node appears more than once, the graph
is referred to as a cyclic graph, as opposed to an acyclic graph. If
there is an edge connecting any two nodes of a graph, then the
graph is considered to be a complete graph. A tree is a connected
acyclic graph. A spanning tree is a connected acyclic spanning
subgraph.

The cut associated with a set of nodes X of a graph G is the set of
all its edges with an extremity in X and another in the complement
of X, VnX. A partition p = {C1,C2, . . .,Ck} of the set of nodes of a graph
G is defined by k subsets of nodes, each one denoted by Ci, where
i = 1, . . .,k. Moreover, V ¼

Sk
i¼1Ci and

Tk
i¼1Ci ¼ ;. A k-way partition-

ing, here denoted by pk, is a partition of V into k parts such that
Ci – ;, for 1 6 i 6 k.

There are several other important concepts in graph theory
(Diestel, 2005; Schrijver, 2003), but the aspects presented in this
section are the most relevant for the understanding of the algo-
rithms presented in the next sections. The following section shows
some constructions of similarity graphs from datasets.
2.1. The construction of similarity graphs

There are cases where data are not originally structured in
graphs. In these cases, a similarity graph can be constructed from
these data. For such, consider an undirected weighted graph
G = (V,E) where each node vi is represented by the ith object from
a given dataset. The edges of G are defined according to a similarity
measure between pairs of objects from this dataset. One of the
most frequently used similarity measures is given by the sigmoid
function. For such, let d(i, j) be the dissimilarity between objects i
and j from the dataset, like, for example, the Euclidean distance.
Then, the weight matrix W of a similarity graph G from the given
dataset can be calculated by making wij ¼ e�dði;jÞ2=r2 , if i – j, and 0,
otherwise.

The parameter r has a high impact on the clustering partition
obtained. Different strategies have been investigated to find its
best value. One of them, presented in Ng et al. (2002), consists in
running a clustering algorithm for different values of r. The r that
provides the least squared intra-cluster distance to its centroid is
chosen. However, this method might not be effective as some addi-
tional parameters need to be set and due to its high computational
cost.

Another strategy was the one suggested by Zelnik-Manor and
Perona (2004), where a local scaling of the parameter r was pro-
posed. In this approach, the parameter r was tuned according to
the distance between the pair of objects being evaluated. The val-
ues of the weights in the weight matrix W were calculated as:
wij ¼ e�dðv i ;v jÞ2=rirj if i – j and 0, otherwise. ri = d(vi,vj), where vj
is defined as the jth neighbor of vi. Again, an additional parameter,
called j, needed to be tuned, and was manually fixed by the
authors for their experiments.

The similarity graph resulting from this strategy can either be
used as a complete graph or be processed in order to eliminate
some of its edges. An alternative for the latter case is the elimina-
tion of the edges of a similarity graph whose weights are lower
than a predefined threshold. Further details and more options for
constructing similarity graphs can be found in Von Luxburg
(2007). Moreover, (Maier et al., 2009) is a good source for addi-
tional information about the impact of different graph construc-
tions on graph clustering results. Since spectral clustering
algorithms are based on the eigen-decomposition of graph Lapla-
cian matrices, these matrices will be discussed in this survey.
2.2. Spectral graph partitioning

The study of spectral graph theory started in Quantum Chemis-
try, with a theoretic model of non saturated hydrocarbon mole-
cules (Hückel, 1931; Cvetković et al., 1979). These molecules
have chemical linkages with many electron energy levels. Some
of these energy levels can be represented by the eigenvalues of a
graph. The study of eigenvectors and eigenvalues of a squared ma-
trix is the essence of the spectral theory. The theoretical foundation
of spectral graph theory started with the works by Hall (1970), Fie-
dler (1975), Cvetković et al. (1979) and was further developed in
the last two decades by Mohar (1991), Chung (1994), Kim and Choi
(2006).

The application of spectral theory to graph clustering problems
is usually based on the relaxation of some graph partitioning prob-
lems. Spectral clustering algorithms are generally based on fast
iterative methods and can benefit from the use of linear algebra
packages, like the linear algebra package (LAPACK) (Anderson
et al., 1990). In the next section, we show some properties of graph
Laplacian matrices important for the comprehension of the spec-
tral clustering algorithms presented in Section 4.
2.2.1. Some properties of Laplacian matrices
Consider a graph G = (V,E) and its weighted matrix W, such that

wij P 0 for i, j = 1, . . .,n. Let D = [dij]n�n, with dij 2 R, be a diagonal
matrix defined by dii ¼

Pn
j¼1wij, i.e., dii is the degree of node vi, with

i = 1, . . .,n. For simplicity reasons, dii will be referred to here as di.
The unnormalized graph Laplacian matrix, defined by L = [lij]n�n

is given by
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L ¼ D�W: ð1Þ

If a graph is unweighted, consider its adjacency matrix A instead of
the weight matrix W in Eq. (1): L = D � A.

The Laplacian matrix L is also known as the Kirchhoff matrix,
due to its role in the Matrix-Tree-Theorem (Mohar, 1991). According
to this theorem, for two vertices vi and vj of a graph G, the absolute
value of the determinant of the matrix produced with the elimina-
tion of the ith row and the jth column of the matrix L is equal to the
number of spanning trees of G.

Laplacian matrices are the heart of the majority of the spectral
clustering algorithms. For this reason, some theorems and proper-
ties concerning the Laplacian matrix L, considered to be relevant
for the spectral relaxation of graph partitioning problems, are pre-
sented next. These statements are based on the study made by Ha-
gen and Kahng (1992), Von Luxburg (2007). Matrix L has the
following properties.

(i) For each x 2 Rn, it is assured that xtLx ¼ 1
2

Pn
i;j¼1wijðxi � xjÞ2,

where xi is the ith component of x.
(ii) L is a symmetric positive-semi-definite matrix.

(iii) The smallest eigenvalue of L is k1 = 0 with the associated
eigenvector 1, where 1 is the indicator vector, i.e.,
1 ¼ ð1; . . . ;1Þt .

To prove Property (i), consider the following equalities:

xtLx ¼ xtDx� xtWx ¼
X

i

dix2
i �

X
i;j

wijxixj ¼
1
2

Xn

i;j¼1

wijðxi � xjÞ2:

By Property (i), we have that L is positive-semidefinite, because
the weights of the graph are all positive, which implies that
xtLx P 0. As a consequence, all its eigenvalues are non-negative.
Furthermore, L is symmetric, since L = D �W = Dt �Wt, which
proves Property (ii). Property (iii) can be easily deduced, because
all eigenvalues are greater than or equal to zero. Moreover,
La1 ¼ 0a1, a 2 R and a – 0. Consequently, 0 is an eigenvalue of L.
The multiplicity of this eigenvalue indicates the number of con-
nected components of a graph.

Taking the last property into account, an approximation for the
number of natural clusters can be specified. Considering Ci as the
ith connected component of a graph G, we have 1Ci

is an eigenvec-
tor associated with the eigenvalue 0. 1Ci

is the vector with the va-
lue 1 in the positions relative to the order of the vertex in the
connected component Ci, i.e., if the vertex vj belongs to the con-
nected component Ci, then the jth position of vector 1Ci

is 1, other-
wise, it is 0. As a result, the property found in Boccaletti et al.
(2006), which claims that if a connected component presents a
structure with k apparent clusters (not necessarily perfect), its
Laplacian matrix will have, besides the null eigenvalue, k � 1
eigenvalues significantly close to 0. The other eigenvalues will be
significantly larger than 0.

In this paper, the eigenvalues of the Laplacian matrices are con-
sidered in their increasing order, k1 6 k2 6 , . . .,kn, always taking
their multiplicities into account, except when another order is
re-defined a priori. Furthermore, the eigenvectors do not need to
be normalized and the first k eigenvectors correspond to the eigen-
vectors associated with the first k eigenvalues arranged in the pre-
defined order.

A particular eigenvalue of L that represents relationships among
connected components of a graph is k2. Fiedler (1975) suggested
that the eigenvector associated with k2, named Fiedler eigenvector,
can be used to find an approximation for the graph bipartitioning
problem. This approximation is based on the signs of the compo-
nents of the Fiedler eigenvector. Fiedler presented an expression
for this eigenvalue and named it the algebraic connectivity of a
graph.
Unlike the formulation proposed by Fiedler (1975), the follow-
ing equation for k2 of L is more commonly used:

k2 ¼minx?1;x–O

xtLx
xtx
¼ minx?1;x–O

1
2

Pn
i;j¼1wijðxi � xjÞ2

jjxjj2
; ð2Þ

where O is the null vector, i.e., O ¼ ð0; . . . ;0Þt .
Two other Laplacian matrices will be discussed in this paper.

The first, the normalized Laplacian matrix, is given by Eq. (3):

LN ¼ I � D�1=2WD�1=2: ð3Þ

The second, the random walk Laplacian matrix, is illustrated by
Eq. (4):

Lrw ¼ I � D�1W: ð4Þ

Some properties of these matrices are discussed in (Von Lux-
burg, 2007). A number of them will be presented later in this paper,
when necessary. All notations used in this section and in Section 2
will be adopted in the remainder of the text. For example, G will
always be a graph, as defined in Section 2. The next section pre-
sents different graph cut and partitioning problems for which spec-
tral methods can be found in the literature.

3. Graph cut and partitioning problems

A large number of graph clustering algorithms are based on
graph partitioning problems. This survey is concerned with a par-
ticular class of these algorithms, known as spectral clustering algo-
rithms. Spectral clustering algorithms are mostly based on the
solution of graph cut problems. For such, they use one or more
eigenvectors from Laplacian matrices of a graph to be partitioned
that are solutions for the relaxation of some graph cut problems.
The most commonly used graph cut problems and their spectral
algorithms will be presented in the next section.

The k-way partitioning problem aims at eliminating edges from
a graph in order to produce k connected subgraphs. Its goal is to
produce well separated clusters, represented by the k connected
subgraphs. Several different criteria can be considered when choos-
ing the set of edges to be eliminated. Some of these criteria, as well
as their advantages and limitations, will be presented next. In all of
them, consider WðCr ;CtÞ ¼

P
v i 2 Cr

v j 2 Ct

wij, �Ci is every cluster Cj such

that j – i and Pk is the set of all possible k-way partitions of G.

3.1. Minimum cut problem

The first problem to be presented is the k-way minimum cut
problem:

min
pk2P

cutðpkÞ; ð5Þ

where:

cutðpkÞ ¼ 1
2

Xk

i¼1

WðCi; �CiÞ: ð6Þ

It aims at minimizing the sum of weights of the edges whose
nodes come from different clusters. Wu and Leahy (1993) observed
that, in many tested graphs, the solutions of this problem are par-
titions with isolated nodes in clusters. This might be a drawback
for many applications, such as in VLSI domain (Alpert et al.,
1999). Other formulations, which take additional aspects into ac-
count, were proposed to solve this limitation. For example, Alpert
et al. (1999) considered some lower and upper bounds to delimit
the size of the clusters of a partition pk. In this case, a set of con-
straints can be added to the k-way min-cut formulation:
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Li 6j Ci j6 Ui, for 1 6 i 6 k. The parameters Li and Ui are, respec-
tively, the lower and the upper bounds for the size of the i-th clus-
ter and jCij is the number of nodes in cluster Ci.

3.2. Minimum ratio cut problem

Another approach to avoid finding partitions with isolated
nodes in clusters is to consider Eq. (5) divided by the number of
elements in each cluster. This formulation was first proposed to
solve the bipartitioning problem (Leighton and Rao, 1988; Wei
and Cheng, 1989), also known as two-way ratio cut problem. Later,
this formulation was generalized by Chan et al. (1994) for the k-
way ratio cut problem through its connection with the weighted
quadratic placement problem formulated by Hall (1970). The k-
way minimum ratio cut formulation is represented by Eq. (7):

min
pk2Pk

ratiocutðpkÞ ð7Þ

where:

ratiocutðpkÞ ¼ 1
2

Xk

i¼1

WðCi; �CiÞ
jCij

: ð8Þ
3.3. Minimum normalized cut problem

An alternative to the k-way minimum cut problem is to divide
the sum parcel WðCi; �CiÞ by the sum of the node degrees of the ob-
jects inside the cluster Ci, which is given by volðCiÞ ¼

P
j2Ci

dj. This
problem is known as the k-way ncut problem and is shown in Eq.
(9):

min
pk2Pk

ncutðpkÞ; ð9Þ

where:

ncutðpkÞ ¼ 1
2

Xk

i¼1

WðCi; �CiÞ
volðCiÞ

: ð10Þ

The k-way ncut problem was proposed by Shi and Malik (1997,
2000) and was derived from the relation between the normalized
association and dissociation measures of a partition. The former
measure reflects the average connectivity of the nodes within each
cluster of a partition. The latter measures the cut cost of a partition
as a percentage of the cut edge connections regarding all the nodes
in a graph. Shi and Malik (1997, 2000) concluded that the problem
of finding a partition that minimizes the dissociation inter-clusters
is the same as the problem of finding a partition that maximizes the
association inside each cluster.

3.4. Min–max cut problem

A distinct cut problem was proposed by Ding et al. (2001, 2004),
which creates the min–max cut problem for clustering. The min–
max cut formulation aims at minimizing the inter-cluster similarities
maximizing the intra-cluster similarities, as can be seen in Eq. (11):

min
pk2Pk

MinMaxCutðpkÞ ð11Þ

where:

MinMaxCutðpkÞ ¼
Xk

i¼1

WðCi; �CiÞ
WðCi;CiÞ

ð12Þ
3.5. Modularity maximization problem

Modularity is a quality validation measure for graph clustering
partitions (Newman and Girvan, 2004). As illustrated by Eq. (13), it
measures, in a partition p, the difference between the sum of the
edge weights connecting nodes inside cluster and the expected
sum of edge weights connecting nodes inside each cluster of the
same partition in a random graph:

q pð Þ ¼ 1
2m

Xn

i¼1

Xn

j¼1

wij �
didj

2m

� �
yij; ð13Þ

where m ¼
Pn

i
di

2 and yij is a variable whose value is 1 if nodes vi and
vj belong to the same cluster, and 0, otherwise. It can be noticed that
the sum of intra-cluster edge weights is counted twice. This is the
reason for the multiplication by 1/2. The multiplication by 1/m is
due to the normalization of the measure, assuring that its value is
less than or equal to 1. The portion didj

2m indicates the probability of
having the edge (vi,vj) in a random graph with the same node degree
sequence as the original graph G. Throughout the text, this portion
will be referred to as pij. If the graph is unweighted, wij = aij. The clo-
ser the value of q(p) is to 1, the better the connectivity of the par-
tition p. In order to find partitions that maximize the modularity
measure, the following mathematical formulation can be used:

max
p2P

qðpÞ; ð14Þ

where P is the set of all possible k-way partitions of G, with
k = 1, . . .,n.

Spectral algorithms have been extensively used to solve the
previous problems as will be seen in the next section.
4. Spectral clustering algorithms

As mentioned previously, an alternative to solve graph parti-
tioning problems is to use the spectral graph theory. A proper
relaxation of graph partitioning problems enables the exploration
of the eigenvalues and eigenvectors properties of their Laplacian
and adjacency matrices. One positive aspect of these methods is
the possibility of defining upper or lower bounds for the objective
function of the graph partitioning problems. Some promising re-
sults of the application of spectral graph theory to data clustering
can be found in computer vision (Shi and Malik, 2000; Luo et al.,
2003), VLSI design (Alpert et al., 1999) and detection of clusters
in protein structures (Kannan and Vishveshwara, 1999).

Spectral clustering algorithms can be classified according to two
approaches: recursive two-way spectral clustering algorithms and
direct k-way spectral clustering algorithms. The former finds the
Fiedler eigenvector of a Laplacian matrix of a graph G and recur-
sively partitions G until a k-way partition is found. The latter uses
the first d P k eigenvectors and directly finds a partition using
some heuristics. Throughout this paper, algorithms based on these
two approaches will be introduced, highlighting the main aspects
of each of them.
4.1. Two-way partitioning algorithms

The two way min-cut problem without constraints that delimit
the size of the clusters can be efficiently solved using the max-flow,
min-cut theorem (Ford and Fulkerson, 1962). Hagen and Kahng
(1992) proposed a spectral clustering algorithm using a recursive
two-way partitioning approach for the k-way ratio cut problem.
This algorithm was based on a study about the one-dimensional
quadratic placement (assignment) problem (Hall, 1970). Hagen
and Kahng, 1992 established the connection between the eigen-
vectors of the Laplacian matrix L of a graph G and the solution of
the relaxed two-way ratio cut problem. To show this connection,
consider a two-way partition p(2) of G and a vector x, x 2 Rn, where
xi = jC2j/n if vi 2 C1, and �jC1j/n, otherwise. Notice that x ? 1, since
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P
ixi ¼j C1 jj C2 j =n� j C2 jj C1 j =n ¼ 0. Moreover,

xi � xj = (jC2j + jC1j)/n = 1 if xi – xj, and 0, otherwise.
By considering Property (i) of the Laplacian matrix L:

xtLx ¼ 1
2

Xn

i;j¼1

wijðxi � xjÞ2 ¼ cutðC1; C2Þ: ð15Þ

Besides, kxk2 = jC1jjC2j/n. Since k2 ¼minx?1;x–O
1
2

Pn

i;j¼1
wijðxi�xjÞ2

kxk2 , it
is possible to show that:

k2 6
cutðC1;C2Þn
jC1jjC2j

) ratiocutðC1;C2ÞP
k2

n
:

As a result, Hagen and Kahng, 1992 found a lower bound for the
two-way ratio cut problem. The relaxation of the two-way min-cut

problem is given by minx?1;x–O
1
2

Pn

i;j¼1
wijðxi�xjÞ2

kxk2 , whose solution vector

is provided by the Fiedler eigenvector of the Laplacian matrix L.
With this result, the authors proposed a recursive two-way spec-
tral clustering algorithm for the k-way ratio cut problem. This algo-
rithm, known as EIGl, is based on the linear ordering of the Fiedler
eigenvector.

Algorithm 1. EIGl

1: Input: A graph G = (V,E); its Laplacian matrix L; and r, a
threshold value

2: Find the second eigenvalue k2 of L and its associated
eigenvector x(2) using the Lanczos algorithm

3: For all vi 2 V, if xð2Þi > r, vi 2 C1, otherwise, vi 2 C2

4: Output: The resulting partition

In algorithm EIGl, whose pseudocode can be seen in Algorithm
1, the inputs are a graph G; its Laplacian matrix L; and r, which is a
threshold value that produces the partition with the best ratio cut
cost.

Later, Von Luxburg (2007) presented a different way to define x
for the same formulation: xi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j C2 j = j C1 j

p
, if vi 2 C1, and

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j C1 j = j C2 j

p
, otherwise. With this modified vector, xtLx = ratio-

cut(C1,C2)n. In this case, kxk2 = n and x is orthogonal to the n-
dimensional vector 1. Conducing the linear relaxation of x, subject
to the previous constraints kxk2 = n and to be orthogonal to 1), x
must be the second eigenvector of the Laplacian matrix L.

In order to find out a feasible solution to the two-way ratio cut
problem from the Fiedler eigenvector, other heuristics different
from EIGl can be adopted (Hagen and Kahng, 1992): (a) if
xð2Þi P 0 then vi 2 C1, otherwise, vi 2 C2; (b) if xð2Þi P med then
vi 2 C1, otherwise, vi 2 C2, where med is the median of x(2); (c) sort
x(2) to a vector y and find the largest eigengap between two consec-
utive elements: lgap = max16i6n�1eigengapi, where eigen-
gapi = jyi � yi+1j. If xð2Þi P lgap then vi 2 C1, otherwise, vi 2 C2.

The linear ordering always finds a solution better than or equal
to these previous heuristics. According to the authors, the com-
plexity of EIGl is dominated by the order of the Lanczos method,
which is O(n + jEj). If G is a complete graph, the algorithm has com-
plexity O(n2).

Shi and Malik (1997, 2000) proposed a recursive two-way ncut
algorithm for the k-way ncut problem. The authors proved that the
minimization of the two-way ncut problem can be relaxed to the
Rayleigh quotient. For such, consider the two-way ncut problem
rewritten in the following way:

min
pkPk

ncutðpkÞ ¼ min
x–0;xT D?1

xT Lx
xT Dx

; ð16Þ

where x 2 Rn is defined by xi = 1, if vi 2 C1, and �vol(C1)/vol(C2),
otherwise. With this definition, it is possible to deduce that
xT D1 ¼ 0 and that xtLx = ncut(C1,C2)vol(V). For more details about
these deductions, see (Von Luxburg, 2007). By relaxing x such that
x 2 Rn, the problem can be seen as the Rayleigh quotient. To solve
the relaxed problem, it is necessary to solve the generalized eigen-
value system:

Lx ¼ kDx: ð17Þ

For such, consider y = D1/2x and LN = D�1/2LD�1/2. Thus, Eq. (17)
can be rewritten as

LNy ¼ ky: ð18Þ

Matrix LN is a Laplacian matrix, known as the normalized graph
Laplacian matrix, and is also positive semi-definite. Let x(i) and y(i)

be the ith eigenvectors of System (17) and of the matrix LN, respec-
tively. As a result of the Raleigh–Ritz theorem, yð2Þ ¼
arg minyT yð1Þ¼0

yT LN y
yT y and xð2Þ ¼ arg min

xð1ÞT D1¼0
xT Lx
xT Dx.

Therefore, the relaxed solution of the generalized Eigensystem
(18) is given by its second eigenvector, resulting in x = D�1/2y(2).
It is worth to observe that x is the second eigenvector of the Lapla-
cian matrix Lrw.

Based on the previous deductions, Shi and Malik (2000) pro-
posed their two-way normalized spectral clustering algorithm
(2NSC). For such, in Algorithm 1, consider as inputs a graph G; its
Laplacian matrix LN; and r. The parameter r has the same role as
the parameter r in algorithm EIGl. However, in this case, r is the
real number that makes the algorithm produce the partition with
the best ncut value. Again, the complexity of this algorithm is dom-
inated by the running time of the Lanczos algorithm.

Regarding the min–max cut formulation, Ding et al. (2001,
2004) developed a graph partitioning algorithm to solve problems
according to this formulation. Their algorithm follows the same
principle found in Algorithm 1, using as input a graph G; its matrix
Lrw; and the value of r that provides the partition with the best ncut
value.

Concerning the modularity maximization problem, Newman
(2006) proposed a recursive two-way spectral clustering algo-
rithm. To understand how it works, a vector x can be defined
according to a two-way partition p(2) as follows: xi = 1, if vi 2 C1,
and �1, otherwise. Thus, the previously mentioned function yij, de-
fined in Section 3.5, can be rewritten as yij ¼ 1

2 ðxixj þ 1Þ. In this
equation, if vi and vj belong to the same cluster, then yij = 1, and
0, otherwise. Therefore, Eq. (13) can be reformulated as

q pð Þ ¼ 1
4m

Xn

i¼1

Xn

j¼1

wij � pij

� �
xixj þ 1
� �

: ð19Þ

Since the objective function of the considered problem tries to
maximize the modularity measure, the constant term of Eq. (19)
can be eliminated. Considering a matrix B = [bij]n�n, such that bij = -
wij � pij, the following expression can be used for the modularity
measure:

qðpÞ ¼ 1
4m

xtBx: ð20Þ

Notice that the objective function of the relaxation of the two-
way ratio cut problem, Eq. (15), is similar to Eq. (20), except for
the constant factor and the matrix B playing the role of the matrix
L.

Some inferences about the matrix B can be made. As di ¼
P

jwij

and
P

jpij ¼ di (this last equation is derived in Newman (2006), the
sum of each row (and column) of B is equal to 0. Moreover, for any
weight matrix W, the n-dimensional vector 1 is the eigenvector of B
associated with the eigenvalue 0, similar to the Laplacian matrix L.
However, unlike L, which just allows non-negative eigenvalues, B
can have both positive and negative eigenvalues. According to
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Newman (2006), these observations are tied to the clustering
structure of a graph.

Since B is a symmetric matrix, its eigenvectors ui associated
with the eigenvalues ki, with i = 1, . . .,n, are orthogonal to each
other and, therefore, form a basis for Rn. Since this is a maximiza-
tion problem, the eigenvectors can be sorted in decreasing order of
eigenvalues: k1 P k2, . . .,P kn. Considering U = [uij]n�n to be a ma-
trix whose columns indicate each of the normalized eigenvectors
of B, it is easy to see that UTU = I. This implies that
x ¼ UT Ux) x ¼

Pn
j¼1ðuT

j xÞuj. Considering aj ¼ uT
j x, it is possible to

rewrite x as x ¼
Pn

j¼1ajuj.
Since xTx = n, then

P
ja2

j ¼ n. The substitution of this expression
in Eq. (20) results in:

qðpÞ ¼ 1
4m

X
i

a2
i ki: ð21Þ

As the problem aims at finding the partition with the largest
modularity, the best solution is achieved when the largest eigen-
values (positive eigenvalues) are considered in the equation. Based
on these considerations, Newman (2006) proposed a two-way
modularity heuristic, named leading eigenvector algorithm (LE).
To describe it, in Algorithm 1, consider as input a graph G; its ma-
trix B; and the parameter r = 0. Besides, instead of the Fiedler
eigenvector x(2), the largest eigenvector of the matrix B should be
used to define the partition. According to some tests performed
by the authors, the method works satisfactorily when looking for
two-way partitions.

In order to find a k-way partition, all previously presented two-
way partitioning algorithms can be recursively applied to the clus-
ters until a k-way partition is obtained. The cluster selected to be
split at each iteration can be, for example, the cluster that produces
the best objective function criterion (Ding et al., 2001, 2004; New-
man, 2006). However, according to the authors, if a graph has a
structure with more than two clusters, these algorithms may pro-
duce unsatisfactory and unstable results. Moreover, these two-way
algorithms may have a high computational cost, since they require
the reconstruction of the Laplacian matrix and the calculation of its
eigenvalues and eigenvectors for each iteration of the heuristic.
Alternatively, many authors proposed direct k-way spectral clus-
tering algorithms based on these problems. These algorithms will
be described in the next section.

4.2. k-way partitioning algorithms

Let us start the discussion of k-way partitioning algorithms with
the algorithms proposed to solve the k-way min-cut problem. The
algorithm introduced by Alpert et al. (1999) is based on a reduction
from the k-way min-cut problem to the vector partitioning prob-
lem. The vector partitioning problem looks for a k-way partition
Pk = {P1, . . .,Pk} in a set of vectors Y. Lower and upper bounds are
employed to delimit the size of the sets Pi, with 1 6 i 6 k. The func-
tion to be optimized is given by

f ðPkÞ ¼
Xk

j¼1

jjYjjj2; where Yj ¼
X
~y2Pj

~y:

This function may either be minimized (min–sum vector parti-
tioning problem) or maximized (max–sum vector partitioning
problem). To perform the reduction, the k-way min-cut problem
was reformulated as follows:

max
pk

nH � cutðpkÞ; where H P kn; and Li 6 jCij

6 Ui; for 1 6 i 6 k:

Next, the authors defined a matrix Vd = [vij]n�d of scaled eigen-
vectors, where:
v ij ¼ uij

ffiffiffiffiffiffiffiffiffiffiffiffiffi
H � kj

q
; ð22Þ

and U = [uij]n�d is the matrix of the first d eigenvectors of the Lapla-
cian matrix L of a graph G, each one represented by a column of U.
Considering P ¼ f~yn

1; . . . ;~yn
ng, where ~yn

i is the i-th row of Vn, the
authors proved that if " i = 1, . . .,n, vi 2 Cl if and only if yd

i 2 Pl, then
nH � cut(pk) = f(Pk).

Using this reduction, Alpert et al. (1999) proposed a greedy
algorithm based on linear ordering, named multiple eigenvector
linear orderings (MELO), whose pseudocode can be seen in Algo-
rithm 2. After the linear ordering step, MELO generates the k-
way final partition by using a dynamic programming procedure
from Alpert and Kahng (1994).

Algorithm 2. MELO

1: Input: A graph G = (V,E); the number of desired clusters, k;
and the number of eigenvectors to be used, d

2: Construct the matrix of scaled eigenvectors Vd according to
Eq. (22), (set P = ;)

3: Make Y ¼ ½~yi
d�n�d, for 1 6 i 6 n, where ~yd is the i-th row of

Vd

4: for j = 1 to n do
5: Find ~yi

d, 1 6 i 6 n, that maximizes jj
P

~y2P~yþ ~yi
djj

6: Add ~yi
d to P and remove ~yi

d from Y
7: Label vi as the jth vertex in the ordering
8: end for
9: Find the final k-way partition using the linear ordering

found in the previous steps and the strategy proposed by
Alpert and Kahng (1994)

10: Output: The final partition

Algorithm MELO has complexity O(dn2) and two parameters to
be set: d and H. Alpert et al. (1999) analyzed the performance of
MELO using integer values in the range [1,10] for d. The authors
concluded that it is not possible to predict the influence of this
parameter on the quality of the results. The best value for d de-
pended on the configuration of the problem as well as the value
chosen for k. Nevertheless, in general, d > k eigenvectors are neces-
sary in order to a good partition to be found. Regarding the param-
eter H, Alpert et al. (1999) tested different alternatives for its value,
and the best results were achieved with H = k2 + kd. In order to cal-
culate the Laplacian matrix eigenvectors, the authors also used the
Lanczos algorithm.

Donath and Hoffman (1973) proposed a theorem that allows
the calculation of a lower bound for the k-way min-cut problem.
This lower bound is based on the eigenvectors of a matrix Ml

resulting from the sum of the adjacency matrix of a graph G with
any diagonal matrix. The unitary vector would be the eigenvector
of Ml associated with the eigenvalue 0. In particular, if the matrix
�D is assumed to be this diagonal matrix, it satisfies these condi-
tions, since Ml = A � D = L. For this reason, the eigenvalues and
eigenvectors of the Laplacian matrix L (ki and ui, respectively) are
considered in the lower bound proposed by Donath and Hoffman
(1973). This lower bound is given by the following inequality:

cutðpkÞP 1
2

Xk

i¼1

kiui: ð23Þ

Chan et al. (1994) presented a spectral relaxation of the k-way
ratio cut problem illustrated by Eq. (7). Together with their pro-
posal, they introduced a spectral heuristic based on the orthonor-
mality among the eigenvectors of the Laplacian matrix L. For
such, the authors represented a k-way partition pk of a graph G
through an assignment matrix X = [xij]n�k, where xij ¼ 1=

ffiffiffiffiffiffiffiffiffiffi
j Cj j

p
, if
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vi 2 Cj, and 0, otherwise; and a rationed partitioned matrix
R = [rij]n�n, with rij = 1/jClj, if vi,vj 2 Cl, and 0, otherwise. Some rela-
tions between the matrices X and R and properties of the matrix X
can be deduced and are useful for the understanding and develop-
ment of the heuristic and lower bound presented in Chan et al.
(1994).

It can be deduced that xt
j Lxj ¼ ratiocutðCj; �CjÞ and that xt

j Lxj is the
element of the jth row and column of XtLX. Therefore,
xt

j Lxj ¼ ðXtLXÞjj, resulting in:
ratiocutðC1;C2; . . . ;CkÞ ¼

Pk
j¼1xt

j Lxj ¼
Pk

j¼1ðX
tLXÞjj ¼ trðXtLXÞ,

where tr(M) is the trace of a matrix M. Moreover, with some simple
algebraic manipulations, it can be observed that XtX = I and XXT = I.

With these properties, it is possible to observe that:

min
pk2Pk

1
2

Xk

i¼1

W Ci; �Ci
� �
jCij

¼ min
XT X¼I

tr XT LX
� �

¼ tr UT LU
� �

¼
Xk

i¼1

ki;

where U = [uij]n�k, whose k columns are the first k normalized
eigenvectors of the matrix L. The first equality is due to a proof by
Chan et al. (1994), which is a version of the Raleigh–Ritz theorem.
Therefore,

Pk
i¼1ki is a lower bound for the k-way ratio cut problem.

The authors also used this result to propose their clustering heuris-
tic. As U is the solution of a relaxed form of the k-way ratio cut prob-
lem, i.e., it is an approximation for X, then, as XXT = I, Z = UUT is an
approximation for the matrix R. Considering UT ¼ ½u01; . . . ;u0n�, each
element of the matrix Z can be written as zij ¼ u0Ti u0j.

Let bP be the directional cosine matrix of the rows of the matrix
U. Each of its elements can be calculated by the equation:
p̂ij ¼

u0T
i

u0
j

ku0
i
kku0

j
k. The idea behind the heuristic proposed by Chan et al.

(1994) is to measure how close nodes are to each other by evalu-
ating the cosine between pairs of rows from U. In this heuristic,
the cosine between pairs of vectors is only calculated if necessary,
since estimating bP in all iterations is an expensive operation. The
heuristic is summarized by Algorithm 3, which has complexity
O(n(bk2 + bklog(n))), where b = max1 6 i 6 ndi.

Since, in some situations, the outsiders from Algorithm 3 share
more edges between them than with nodes from the clusters, a
variation of the algorithm is also proposed by Chan et al. (1994).
In this variation, after each allocation of an outsider, the solution
that merges the whole set of the remaining outsiders with the clus-
ter that gives the best ratio cut is calculated. If this solution is bet-
ter than the best ratio cut produced by merging one element from
the set S with one cluster from the current partition, then all out-
siders are assigned to the cluster that gives the best ratio cut.

More recently, other approaches that group the rows of the ma-
trix U have been investigated. For example, Von Luxburg (2007)
presented the Unnormalized k-means algorithm (Ukmeans), illus-
trated in Algorithm 4.

Algorithm 3. KP

1: Input: A graph G = (V,E); and the number of desired
clusters, k

2: Find the first k eigenvectors of L and sort them in the
columns of the matrix U

3: Select k nodes to represent each of the k prototype clusters
using their magnitude (ku0ik) and their mutual (near)
orthogonality relationship

4: During 4 iterations: Calibrate the k prototypes by
calculating their average with prototypes from the previous
iteration and by the posterior selection of the closest node
as the seed for each prototype

5: For every i = 1, . . .,n, verify if the cosine between u0i and one
of the prototypes is higher than cos(p/8). If so, assign node i
to the prototype with the largest cosine
⇑ (continued)

Algorithm 3. KP

6: Let S be the set of non-allocated nodes (outsiders)
7: For all s 2 S, find the largest weight cut between s and all

existing clusters and mark the cluster (target) with the
largest cut value (key)

8: While S – ;, the outsider with the largest cut is inserted to
its target and all targets and keys of the remaining neighbor
outsiders are recalculated

9: Output: The final partition

Algorithm 4. Ukmeans

1: Input: A graph G = (V,E); and the number of desired
clusters, k

2: Find the first k eigenvectors of L and sort them in the
columns of matrix U. The i-th row of the matrix U will
represent node vi from graph G

3: Apply the k-means algorithm to the matrix U and find a k-
way partition p0k ¼ fC01; . . . ;C0ng

4: Form the final partition assigning every node vi, with
1 6 i 6 n, to cluster Cl, if the ith row of U belongs to C0l in the
partition p0k

5: Output: The final partition

According to Von Luxburg (2007), there is no foundation for
applying the k-means algorithm in step 3 of Algorithm 4. The
author justifies that, as the Laplacian matrix translates many con-
nectivity properties of a graph, this step of the algorithm should be
simple. Therefore, the k-means algorithm is used. Nevertheless,
other approaches can be explored for the same purpose.

Regarding the k-way ncut problem, a spectral clustering algo-
rithm (KNSC) was introduced by Shi and Malik (2000) to solve it.
KNSC is based on the first k eigenvectors of the generalized Eigen-
system (17). To explain in more details how this algorithm works,
Von Luxburg (2007) defined the binary matrix X = [xij]n�k, where
xij = 1, if vi 2 Cj, and 0, otherwise.

By considering xj as the jth column of the matrix X,
xt

j Lxj ¼ ncutðCj; �CjÞ. Furthermore, it is possible to see that XtDX = I.
Thus, the k-way ncut problem can be rewritten in the following
way:

minpk2Pk trðXtLXÞ; subject to XtDX

¼ I; with X as previously defined:

By relaxing the integrality conditions of X, Y = D1/2X. If LN = D�1/

2LD�1/2 = I � D�1/2WD�1/2 is considered, the following problem is a
relaxation of the k-way ncut problem:

minY2Rn�k tr YtLNY
� �

; subject to YtY ¼ I:

The solution of this problem is the matrix with the first k eigenvec-
tors of the matrix LN arranged as columns of Y. Substituting X by
D�1/2Y and taking some properties of LN into account (Von Luxburg,
2007), the solution of the problem is the set of the first k eigenvectors
of Lrw = I � D�1W. Shi and Malik (2000) used this result in their
spectral clustering algorithm. They applied the k-means algorithm
to cluster the rows of the matrix Y, in which each row represents an
object from a dataset. Algorithm KNSC is presented in Algorithm 5.
Its complexity is equal to the complexity of the Lanczos algorithm.

Meilă and Shi (2001), Meilă and Xu (2004) analyzed the condi-
tions for the set of k eigenvectors to be piecewise constant with
relation to a partition pk in the k-way ncut clustering algorithm
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proposed by Shi and Malik (2000). Consider P to be the stochastic
matrix P = D�1W. A set of eigenvectors u1, . . .,uk are said to be
piecewise constant with relation to a partition pk when, for every
vi,vj 2 Cs, ui1 = uj1, . . .,uik = ujk. The authors found that this condition
is satisfied when Pis ¼

P
v j2Cs

Pij is constant for all v i 2 Cs0 with
"s

0 2 1, . . .,k and P0 ¼ ½Pss0 � with s, s
0 2 1, . . .,k is non-singular.

Algorithm 5. KNSC

1: Input: A graph G = (V,E); and the number of desired
clusters, k

2: Find the first k eigenvectors of the generalized Eigensystem
(17) and sort them in the columns of the matrix U. The ith
row of the matrix U will represent node vi from graph G

3: Apply the k-means algorithm to the matrix U and find a k-
way partition p0k ¼ fC01; . . . ;C0ng

4: Form the final partition assigning every node vi, with
1 6 i 6 n, to cluster Cl if the ith row of U belongs to C0l in the
partition p0k

5: Output: The final partition

A k-way ncut spectral clustering algorithm proposed by Ng et al.
(2002), named KNSC1 and summarized in Algorithm 6, differs from
Algorithm 5 in the sense that the eigenvectors to be clustered are
obtained from the Laplacian matrix LN. However, like Shi and Malik
(2000), its computational complexity is of the same order of the
Lanczos algorithm.

Algorithm 6. KNSC1

1: Input: A graph G = (V,E); and the number of desired
clusters, k

2: Find the first k eigenvectors of the Laplacian matrix LN and
sort them in the columns of the matrix U

0
. Form matrix

U = [uij]n�k from U
0

by normalizing each row of U
0

using

uij ¼ u0ij=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ku02ik

q
3: The ith row of the matrix U will represent node vi from

graph G
4: Apply the k-means algorithm to the matrix U and find a k-

way partition p0k ¼ fC01; . . . ;C0ng
5: Form the final partition assigning every node vi, with

1 6 i 6 n, to cluster Cl, if the ith row of U belongs to C0l in the
partition p0k

6: Output: The final partition
Additionally, Ng et al. (2002) studied the stability of clusters
from a partition through an eigengap analysis according to the ma-
trix perturbation theory (Stewart and Sun, 1990). If a graph has, for
example, a three-cluster structure, then the difference between the
third and forth eigenvalues of the matrix L is relatively large (with
regard to the previous mutual differences).

Similar to Ng et al. (2002), Yu and Shi (2003) proposed a spec-
tral algorithm for clustering based on the normalized graph
Laplacian matrix LN. Aiming at minimizing the k-way ncut, the
first k eigenvectors of LN are normalized before the final partition
is calculated. This calculation is carried out by an iterative
procedure.

Regarding the k-way min–max cut problem, Gu et al. (2001)
investigated and presented a lower bound for this problem. The
authors showed that:

MinMaxcutðpkÞ ¼
Xk

i¼1

xT
i Lxi

xT
i Wxi

¼
Xk

i¼1

1
yT

i LNyi
� k; ð24Þ
where yi = D1/2xi/kD1/2xik. It is known that LN is a positive semi-def-
inite matrix (Von Luxburg, 2007). Considering Y the matrix whose
columns are the vectors yi, i = 1, . . .,k, it is possible to state that
YTY = I. Gu et al. (2001) reported that a lower bound for the min–
max cut problem is given by

min
YT Y¼I;yT

i
LN yi>0

max
16i6k

1
yT

i LNyi
¼ k2Pk

i¼1ki

; ð25Þ

where ki are eigenvalues from LN set in decreasing order of value.
Finally, concerning the modularity maximization problem to

find k-way partitions, Newman (2006) proposed a k-way spectral
clustering algorithm. For such, they defined a matrix X = [xij]n�k,
where xij = 1, if vi 2 Cj, and 0, otherwise. Each column of X repre-
sents a cluster of a k-way partition pk. Therefore, yij can be re-for-
mulated as yij ¼

Pk
r¼1xirxjr . Thus, the modularity of a partition pk of

a graph G can be calculated by qðpkÞ ¼ 1
2m

P
i;jPk

r¼1bijxirxjr ¼ trðXT BXÞ. It is worth to remember that the columns
of X are orthogonal to each other. Moreover, XTX = I.

It is possible to write B as a function of its eigenvectors and
eigenvalues matrices: B = UKUT, where K is the diagonal matrix
whose ith element of its diagonal is given by the eigenvalue ki asso-
ciated with the eigenvector ui. Thus, q(pk) can be rewritten as

q pk
� �

¼
Xn

i¼1

Xk

j¼1

ki uT
i xj

� �2
: ð26Þ

By Eq. (26), q(pk) is maximized if the largest k positive eigen-
values of B and their associated eigenvectors (leading eigenvectors)
are used. Observing that just the eigenvectors associated with the
positive eigenvalues add a positive value to q(pk), it is possible to
deduce an upper bound for the number of clusters, k, of the optimal
partition from the modularity maximization problem. This upper
bound would be the number of positive eigenvalues plus 1, named
c here.

The k-way spectral clustering algorithm proposed by Newman
(2006) relies on a vector partitioning algorithm. Newman (2006)
presented a reduction from the modularity maximization problem
to the vector partitioning problem based on a matrix of scaled
eigenvectors (likewise the study performed by Alpert et al.
(1999)). For this reduction, the function q(pk) was rewritten as

q pk
� �

¼ naþ
Xn

i¼1

Xk

j¼1

ki � að Þ
Xn

t¼1

utixtj

 !2

; ð27Þ

where a ¼ 1
n�c

Pn
i¼cþ1ki is a constant tunned after a study of the error

minimization of the q(pk) approximation. Let R = [rij]n�k be the ma-
trix of scaled eigenvectors, where the ith row represents node vi of a
graph G and each of its element is defined by rij ¼ uij

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kj � a

p
, where

a 6 kk. Each vector~ri, for 1 6 i 6 n, denotes a k-dimensional vector
that corresponds to the i-th row of R. If the terms associated with
the negative eigenvectors are eliminated from Eq. (27), (supposing
that they correspond to the last n � c eigenvalues), q(pk) could be
approximated by qðpkÞ ¼ naþ

Pk
j¼1kRjk2.

It is already known that c P k, since it is an upper bound for k.
By considering Rj ¼

P
v i2Cj

~ri, the problem becomes a vector parti-
tioning problem. According to Newman (2006), this problem can
be heuristically solved by a vector partitioning algorithm (similar
to MELO’s algorithm) adapted to this problem. The final partition
can be refined using a local search. According to the author, the re-
sults obtained using this heuristic for k > 2 were acceptable.

In the literature, it is possible to find spectral clustering algo-
rithms to graph partitioning problems different from those pre-
sented in this survey (Bach and Jordan, 2004; Zha et al., 2002). In
particular, Bach and Jordan (2004) introduced a new cost function
that evaluates how close the eigenstructure of a similarity matrix
W is to a given partition. Zha et al. (2002) proposed a clustering



Table 1
Comparison between solutions found by LE and LE-kmeans algorithms.

n Graph LE LE-kmeans

k Solution k Solution

112 Adjnoun 17 0.2215 5 0.2665
62 Dolphins 6 0.4894 3 0.4678
198 Jazz 8 0.3529 4 0.3960
34 Karate 5 0.3776 5 0.4062
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algorithm and a lower bound for the minimum sum of squares of
clusters from a partition using the first eigenvalues of a data ma-
trix. In spite of the existence of many others spectral clustering
algorithms, due to space constraints, we cover in this survey only
the algorithms that we consider as milestones in the evolution of
spectral clustering algorithms.

4.3. Some comments with respect to spectral clustering algorithms

A research topic closely related to spectral relaxation is semi-def-
inite programming (SDP) relaxation. The connection between these
topics is due to the use of eigen-decomposition of graph Laplacian
matrices. A SDP relaxation aims to obtain a set of feasible solutions
defined by a convex region. However, SDP is known to be computa-
tionally expensive, since its solution methods are mostly based on
interior point strategies (Xing and Jordan, 2003), thus being efficient
only for small datasets. Nevertheless, the spectral relaxation is based
on results from spectral graph theory. Some SDP clustering algo-
rithms can be found in literature (De Bie and Cristianini, 2006;
Kim and Choi, 2006; Kulis et al., 2007; Singh et al., 2008).

According to Fowlkes et al. (2004), despite the growing use of
spectral clustering methods, their application to large problems
has not been explored. Their high computational cost reduces the
chances of a good performance. To overcome this problem, the
authors proposed the use of an extension of the Nyström method
in order to find numerical approximations for the eigenvectors of
a similarity graph.

Although they have been investigated for many decades, few
spectral clustering algorithm studies tackled the consistency of
the existing algorithms. Brand and Huang (2003) performed a the-
oretical study to analyze the reasons why spectral clustering algo-
rithms based on the eigenvalues and eigenvectors of similarity
matrices usually work. The authors investigated a nonlinear
dimensionality reduction of similarity matrices through the matrix
of their first k eigenvectors. They concluded that if the correlation
between two points from the similarity matrix is high (low), the
correlation between this pair of points from its eigenvector’s ma-
trix is even higher (lower). Recently, Von Luxburg et al. (2008)
showed the superiority of the normalized spectral clustering algo-
rithms over the unnormalized algorithms, pointing out their con-
vergence under more general conditions.
5. Computational experiments

In order to experimentally evaluate and compare the perfor-
mance of the two-way and k-way partitioning algorithms, experi-
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Fig. 1. (a) EIGl versus Ukmean
ments were carried out with the problems: minimization of ratio
cut and ncut, and modularity maximization. For these experiments,
the following graphs from literature were used: adjnoun (Newman,
2006), dolphins (Lusseau et al., 2003), jazz (Gleiser and Danon,
2003) and karate (Zachary, 1977). These experiments were all
run using a code based on the Venables and Smith (2010). The
algorithms tested were: EIGl, Ukmeans, 2KNSC, KNSC, LE and LE-
kmeans. This last algorithm applies the k-means algorithm to the
matrix of the k � 1 largest eigenvectors and selects the partition
that provides the best modularity for k = 2, . . .,n. The function lead-
ing.eigenvector.community from igraph package was employed to
test LE.

Table 1 presents the results obtained by LE and LE-kmeans. The
first column reports the number of nodes in each graph, whereas
the third to sixth columns present the number of clusters and
the solution value of the final partition found by LE and LE-kmeans,
respectively. To report the results of the EIGl, Ukmeans, 2KNSC and
KNSC, Fig. 1(a) and (b) illustrate the relation between the number
of clusters and the normalized solution value. The maximum num-
ber of clusters for each graph is given by max{30,n/2}.

It is possible to observe that, in general, the solutions found by
k-way outperformed the recursive two-way partitioning algo-
rithms. However, the stability of the solutions when the numbers
of clusters is increased did not present a significant difference.
The Pearson correlation between the solutions found by EIGl and
Ukmeans algorithms, for each graph, had an average of 0.9960.
Regarding the 2NSC and KNSC algorithms, an average of 0.9990
was found. Both correlation values indicate a high correlation be-
tween the solutions, with a similar behavior when the number of
clusters is increased. Regarding the computational time, EIGl and
2NSC presented considerable higher running time than Ukmeans
and KNSC, respectively. It is important to mention that the differ-
ence got larger when the number of clusters was increased. As LE
respects the algorithm proposed by Newman (2006), r = 0, its time
difference with respect to LE-kmeans was not considerable. Unlike
the other recursive two-way partitioning algorithms, it did not
spend time searching for the best value for the parameter r.
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6. Final remarks

This survey was concerned with a particular class of clustering
algorithms, known as spectral clustering algorithms. These algo-
rithms have been used to solve distinct graph cut and partitioning
problems. They are characterized by their elegant mathematical
basis and the production of high quality partitions. Moreover, they
present the advantage of giving lower and upper bounds for the
studied problems.

The recursive two-way algorithms were the pioneers in spectral
clustering algorithms and, along the years, authors have claimed
that they are inefficient and unstable. However, their instability
was not observed in the experiments performed in this paper.
The direct k-way spectral clustering algorithms have become more
popular in the last decades, mainly because they give better results
for the problems.

In this survey, it was observed that most of the direct k-way
partitioning algorithms found in literature uses a correspondence
between the vertices from a graph G and the rows from the eigen-
vectors’ matrix of a Laplacian matrix of G. To group the rows of the
eigenvectors’ matrix, authors have adopted two main strategies:
linear ordering (Alpert et al., 1999; Newman, 2006) and the use
of the k-means algorithm (Ng et al., 2002; Von Luxburg, 2007).
Additionally, few works use other strategies for grouping the ma-
trix of eigenvectors, like, for example, metaheuristics.

It was also observed that there are a few open issues in the area
of cluster analysis where spectral theory can provide new insights,
such as the choice of the value of k, i.e., the number of clusters. For
example, it can be done by choosing the value of k that provides
the largest eigengap. In an empirical study performed for this sur-
vey, some effective results using this approach show how eigen-
values and eigenvectors can significantly contribute to define the
cluster structure.
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