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ABSTRACT | Sparse and redundant representation modeling of

data assumes an ability to describe signals as linear combina-

tions of a few atoms from a pre-specified dictionary. As such,

the choice of the dictionary that sparsifies the signals is crucial

for the success of this model. In general, the choice of a proper

dictionary can be done using one of two ways: i) building a

sparsifying dictionary based on a mathematical model of the

data, or ii) learning a dictionary to perform best on a training

set. In this paper we describe the evolution of these two

paradigms. As manifestations of the first approach, we cover

topics such as wavelets, wavelet packets, contourlets, and

curvelets, all aiming to exploit 1-D and 2-Dmathematical models

for constructing effective dictionaries for signals and images.

Dictionary learning takes a different route, attaching the

dictionary to a set of examples it is supposed to serve. From

the seminal work of Field and Olshausen, through the MOD, the

K-SVD, the Generalized PCA and others, this paper surveys the

various options such training has to offer, up to the most recent

contributions and structures.

KEYWORDS | Dictionary learning; harmonic analysis; signal

approximation; signal representation; sparse coding; sparse
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I . INTRODUCTION

The process of digitally sampling a natural signal leads to its

representation as the sum of Delta functions in space or

time. This representation, while convenient for the pur-

poses of display or playback, is mostly inefficient for anal-

ysis tasks. Signal processing techniques commonly require

more meaningful representations which capture the useful

characteristics of the signalVfor recognition, the repre-
sentation should highlight salient features; for denoising,

the representation should efficiently separate signal and

noise; and for compression, the representation should

capture a large part of the signal with only a few coeffi-

cients. Interestingly, in many cases these seemingly differ-

ent goals align, sharing a core desire for simplification.

Representing a signal involves the choice of a dictionary,

which is the set of elementary signalsVor atomsVused to
decompose the signal. When the dictionary forms a basis,

every signal is uniquely represented as the linear combi-

nation of the dictionary atoms. In the simplest case the

dictionary is orthogonal, and the representation coeffi-

cients can be computed as inner products of the signal and

the atoms; in the non-orthogonal case, the coefficients are

the inner products of the signal and the dictionary inverse,

also referred to as the bi-orthogonal dictionary.
For years, orthogonal and bi-orthogonal dictionaries

were dominant due to their mathematical simplicity. How-

ever, the weakness of these dictionariesVnamely their

limited expressivenessVeventually outweighed their sim-

plicity. This led to the development of newer overcomplete
dictionaries, having more atoms than the dimensions of the

signal, which promised to represent a wider range of signal

phenomena.
The move to overcomplete dictionaries was done cau-

tiously, in an attempt to minimize the loss of favorable

properties offered by orthogonal transforms. Many dictio-

naries formed tight frames, which ensured that the repre-

sentation of the signal as a linear combination of the atoms

could still be identified with the inner products of the

signal and the dictionary. Another approach, manifested by
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the Best Basis algorithm, utilized a specific dictionary
structure which essentially allowed it to serve as a pool of

atoms from which an orthogonal sub-dictionary could be

efficiently selected.

Research on general overcomplete dictionaries mostly

commenced over the past decade, and is still intensely

ongoing. Such dictionaries introduce an intriguing ambi-

guity in the definition of a signal representation. We

consider the dictionary D ¼ ½d1d2 . . . dL� 2 R
N�L, where

the columns constitute the dictionary atoms, and L � N.

Representing a signal x 2 R
N using this dictionary can

take one of two pathsVeither the analysis path, where the

signal is represented via its inner products with the atoms,

Ga ¼ DTx; (1)

or the synthesis path, where it is represented as a linear

combination of the atoms,

x ¼ DGs: (2)

The two definitions coincide in the complete case

ðL ¼ NÞ, when the analysis and synthesis dictionaries are

bi-orthogonal. In the general case, however, the two may

dramatically differ.
The synthesis approach poses yet another interesting

question: when D is overcomplete, the family of repre-

sentations Gs satisfying (2) is actually infinitely large, with

the degrees of freedom identified with the null-space of D.

This allows us to seek the most informative representation

of the signal with respect to some cost function CðGÞ:

Gs ¼ Arg min
G

CðGÞ Subject to x ¼ DG: (3)

Practical choices of CðGÞ promote the sparsity of the

representation, meaning that we want the sorted coeffi-

cients to decay quickly. Solving (3) is thus commonly
referred to as sparse coding. We can achieve sparsity by

choosing CðGÞ as some robust penalty function, which we

loosely define as a function that is tolerant to large

coefficients but aggressively penalizes small non-zero

coefficients. Examples include the Huber function [1] as

well as the various ‘p cost functions with 0 � p � 1.

The two options (1) and (2), and specifically the

problem (3), have been extensively studied over the past
few years. This in turn has led to the development of new

signal processing algorithms which utilize general over-

complete transforms. However, in going from theory to

practice, the challenge of choosing the proper dictionary

for a given task must be addressed. Earlier works made use

of traditional dictionaries, such as the Fourier and wavelet

dictionaries, which are simple to use and perform adequately

for 1-dimensional signals. However, these dictionaries are
not well equipped for representing more complex natural

and high-dimensional signal data, and new and improved

dictionary structures were sought.

A variety of dictionaries have been developed in response

to the rising need. These dictionaries emerge from one of

two sourcesVeither a mathematical model of the data, or a set
of realizations of the data. Dictionaries of the first type are

characterized by an analytic formulation and a fast implicit
implementation, while dictionaries of the second type

deliver increased flexibility and the ability to adapt to

specific signal data. Most recently, there is a growing interest

in dictionaries which can mediate between the two types,

and offer the advantages of both worlds. Such structures are

just beginning to emerge, and research is still ongoing.

In this paper we present the fundamental concepts

guiding modern dictionary design, and outline the various
contributions in the field. In Section II we take a historical

viewpoint, and trace the evolution of dictionary design

methodology from the early 1960’s to the late 1990’s,

focusing on the conceptual advancements. In Sections III

and IV we overview the state-of-the art techniques in both

analytic and trained dictionaries. We summarize and conc-

lude in Section V.

II . A HISTORY OF TRANSFORM DESIGN

A. Signal Transforms: The Linear Era
Signal transforms have been around for as long as signal

processing has been conducted. In the 1960’s, early signal
processing researchers gave significant attention to linear

time-invariant operators, which were simple and intuitive

processes for manipulating analog and digital signals. In

this scenery, the Fourier transform naturally emerged as

the basis which diagonalizes these operators, and it imme-

diately became a central tool for analyzing and designing

such operators. The transform gained tremendous popu-

larity with the introduction of the Fast Fourier Transform
(FFT) in 1965 by Cooley and Tukey [2], which provided its

numerical appeal.

The Fourier basis describes a signal in terms of its

global frequency content, as a combination of orthogonal

waveforms

F ¼ �nðxÞ ¼ einx
� �

n2Z:

A signal is approximated in this basis by projecting it onto
the K lowest frequency atoms, which has a strong smooth-

ing and noise-reducing effect. The Fourier basis is thus

efficient at describing uniformly smooth signals. However,

the lack of localization makes it difficult to represent

discontinuities, which generate large coefficients over all

frequencies. Therefore, the Fourier transform typically

produces oversmooth results in practical applications. For
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finite signals, the Fourier transform implicitly assumes a

periodic extension of the signal, which introduces a

discontinuity at the boundary. The Discrete Cosine Trans-
form (DCT) is the result of assuming an anti-symmetric

extension of the signal, which results in continuous bound-

aries, and hence in a more efficient approximation. Since

the DCT has the added advantage of producing non-

complex coefficients, it is typically preferred in practical

applications; see Fig. 1 for some 2-D DCT atoms.

Signal approximation in the Fourier basis was soon

recognized as a specific instance of linear approximation:
given a basis fFngN�1

n¼0 of RN, a signal x 2 R
N is linearly

approximated by projecting it onto a fixed subset of K G N
basis elements

x �
X
n2IK

YT
nx

� �
Fn; (4)

where fYngN�1
n¼0 is in general the bi-orthogonal basis

(Yn ¼ Fn in the orthonormal case). The process is an

under-complete linear transform of x, and, with the right

choice of basis, can achieve compactionVthe ability to cap-

ture a significant part of the signal with only a few coef-
ficients. Indeed, this concept of compaction will later be

replaced with sparsity, though the two are closely related [3].

Optimizing compaction was a major driving force for

the continued development of more efficient representa-

tions. During the 1970’s and 1980’s, a new and very

appealing source of compaction was brought to light: the
data itself. The focus was on a set of statistical tools devel-

oped during the first half of the century, known as the
Karhunen-Loève Transform (KLT) [4], [5], or Principal

Component Analysis (PCA) [6]. The KLT is a linear trans-

form which can be adapted to represent signals coming

from a certain known distribution. The adaptation process

fits a low-dimensional subspace to the data which mini-

mizes the ‘2 approximation error. Specifically, given the

data covariance matrix 2 (either known or empirical), the

KLT atoms are the first K eigenvectors of the eigenvalue
decomposition of 2,

2 ¼ U�UT:

From a statistical point of view, this process models the

data as coming from a low-dimensional Gaussian distribu-

tion, and thus is most effective for Gaussian data. Fig. 1
shows an example of the KLT basis trained from a set of

image patches. The DCT basis, shown in the same figure, is

regarded as a good approximation of the KLT for natural

image patches when a non-adaptive transform is required.

Compared to the Fourier transform, the KLT is superior

(by construction) in terms of representation efficiency.

However, this advantage comes at the cost of a non-

structured and substantially more complex transform. As
we will see, this tradeoff between efficiency and adaptivity
continues to play a major role in modern dictionary design

methodology as well.

B. Non-Linear Revolution and Elements of Modern
Dictionary Design

In statistics research, the 1980’s saw the rise of a new
powerful approach known as robust statistics. Robust

statistics advocates sparsity as a key for a wide range of

recovery and analysis tasks. The idea has its roots in clas-

sical Physics, and more recently in Information Theory, and

promotes simplicity and conciseness in guiding phenomena

descriptions. Motivated by these ideas, the 1980’s and

1990’s were characterized by a search for sparser rep-

resentations and more efficient transforms.
Increasing sparsity required departure from the linear

model, towards a more flexible non-linear formulation. In

the non-linear case, each signal is allowed to use a different

set of atoms from the dictionary in order to achieve the

best approximation. Thus, the approximation process

becomes

x �
X

n2IKðxÞ
cnFn; (5)

where IKðxÞ is an index set adapted to each signal indi-

vidually (we refer the reader to [5], [7] for a more thorough

discussion of this topic).

The non-linear view paved the way to the design of

newer, more efficient transforms. In the process, many of
the fundamental concepts guiding modern dictionary

design were formed. Following the historic time line, we

trace the emergence of the most important modern dic-

tionary design concepts, which were mostly formed during

the last two decades of the 20th century.

Localization: To achieve sparsity, transforms required

better localization. Atoms with concentrated supports
allow more flexible representations based on the local sig-

nal characteristics, and limit the effects of irregularities,

which are observed to be the main source of large coef-

ficients. In this spirit, one of the first structures to be used

was the Short Time Fourier Transform (STFT) [8], which

emerges as a natural extension to the Fourier transform. In

the STFT, the Fourier transform is applied locally to

Fig. 1. Left: a few 12 � 12 DCT atoms. Right: the first 40 KLT atoms,

trained using 12 � 12 image patches from Lena.

Rubinstein et al. : Dictionaries for Sparse Representation Modeling

Vol. 98, No. 6, June 2010 | Proceedings of the IEEE 1047

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on August 11,2010 at 18:36:55 UTC from IEEE Xplore.  Restrictions apply. 



(possibly overlapping) portions of the signal, revealing a

time-frequency (or space-frequency) description of the

signal. An example of the STFT is the JPEG image

compression algorithm [9], which is based on this concept.

During the 1980’s and 1990’s, the STFT was exten-
sively researched and generalized, becoming more known

as the Gabor transformVnamed in homage of Dennis

Gabor, who first suggested the time-frequency decompo-

sition back in 1946 [10]. Gabor’s work was independently

rediscovered in 1980 by Bastiaans [11] and Janssen [12],

who studied the fundamental properties of the expansion.

A basic 1-D Gabor dictionary consists of windowed

waveforms

G ¼ �n;mðxÞ ¼ wðx� �mÞei2��nx
� �

n;m2Z;

where wð�Þ is a low-pass window function localized at 0

(typically a Gaussian), and � and � control the time and

frequency resolutions of the transform. Much of the math-

ematical foundations of this transform were laid out during
the late 1980’s by Daubechies, Grossman and Meyer [13],

[14] who studied the transform from the angle of frame

theory, and by Feichtinger and Gröchenig [15]–[17] who

employed a generalized group-theoretic point of view.

Study of the discrete version of the transform and its

numerical implementation followed in the early 1990’s,

with notable contributions by Wexler and Raz [18] and by

Qian and Chen [19].
In higher dimensions, more complex Gabor structures

were developed which add directionality, by varying the

orientation of the sinusoidal waves. This structure gained

substantial support from the work of Daugman [20], [21],

who discovered oriented Gabor-like patterns in simple-cell

receptive fields in the visual cortex. These results motivated

the deployment of the transform to image processing tasks,

led by works such as Daugman [22] and Porat and Zeevi
[23]. Today, practical uses of the Gabor transform are

mainly in analysis and detection tasks, as a collection of

directional filters. Fig. 2 shows some examples of 2-D

Gabor atoms of various orientations and sizes.

Multi-Resolution: One of the most significant conceptual
advancements achieved in the 1980’s was the rise of multi-
scale analysis. It was realized that natural signals, and

images specifically, exhibited meaningful structures over

many scales, and could be analyzed and described

particularly efficiently by multi-scale constructions. One

of the simplest and best known such structures is the

Laplacian pyramid, introduced in 1984 by Burt and Adelson

[24]. The Laplacian pyramid represents an image as a
series of difference images, where each one corresponds to

a different scale and roughly a different frequency band.

In the second half of the 1980’s, though, the signal

processing community was particularly excited about the

development of a new very powerful tool, known as wavelet
analysis [5], [25], [26]. In a pioneering work from 1984,

Grossman and Morlet [27] proposed a signal expansion

over a series of translated and dilated versions of a single
elementary function, taking the form

W ¼ �n;mðxÞ ¼ �n=2fð�nx� �mÞ
n o

n;m2Z
:

This simple idea captivated the signal processing and

harmonic analysis communities, and in a series of

influential works by Meyer, Daubechies, Mallat and others

[13], [14], [28]–[33], an extensive wavelet theory was

formalized. The theory was formulated for both the

continuous and discrete domains, with a complete

mathematical framework relating the two. A significant

breakthrough came from Meyer’s work in 1985 [28], who
found that unlike the Gabor transform (and contrary to

common belief) the wavelet transform could be designed

to be orthogonal while maintaining stabilityVan extremely

appealing property to which much of the initial success of

the wavelets can be attributed to.

Specifically of interest to the signal processing

community was the work of Mallat and his colleagues

[31]–[33] which established the wavelet decomposition as
a multi-resolution expansion and put forth efficient

algorithms for computing it. In Mallat’s description, a

multi-scale wavelet basis is constructed from a pair of

localized functions referred to as the scaling function and

the mother wavelet, see Fig. 3. The scaling function is a low

Fig. 2. Left: a few 12 � 12 Gabor atoms at different scales and

orientations. Right: a few atoms trained by Olshausen and Field

(extracted from [34]).

Fig. 3. Left: Coiflet 1-D scaling function (solid) and mother wavelet

(dashed). Right: some 2-D separable Coiflet atoms.
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frequency signal, and along with its translations, spans the
coarse approximation of the signal. The mother wavelet is

a high frequency signal, and with its various scales and

translations spans the signal detail. In the orthogonal case,

the wavelet basis functions at each scale are critically

sampled, spanning precisely the new detail introduced by

the finer level.

Non-linear approximation in the wavelet basis was shown

to be optimal for piecewise-smooth 1-D signals with a finite
number of discontinuities, see e.g., [32]. This was a striking

finding at the time, realizing that this is achieved without

prior detection of the discontinuity locations. Unfortunately,

in higher dimensions the wavelet transform loses its opti-

mality; the multi-dimensional transform is a simple separa-

ble extension of the 1-D transform, with atoms supported

over rectangular regions of different sizes (see Fig. 3). This

separability makes the transform simple to apply, however
the resulting dictionary is only effective for signals with point
singularities, while most natural signals exhibit elongated

edge singularities. The JPEG2000 image compression stan-

dard, based on the wavelet transform, is indeed known for its

ringing (smoothing) artifacts near edges.

Adaptivity: Going to the 1990’s, the desire to push spar-

sity even further, and describe increasingly complex
phenomena, was gradually revealing the limits of approx-

imation in orthogonal bases. The weakness was mostly

associated with the small and fixed number of atoms in the

dictionaryVdictated by the orthogonalityVfrom which

the optimal representation could be constructed. One

option to obtain further sparsity was thus to adapt the
transform atoms themselves to the signal content.

One of the first such structures to be proposed was the
wavelet packet transform, introduced by Coifman, Meyer and

Wickerhauser in 1992 [35]. The transform is built upon the

success of the wavelet transform, adding adaptivity to allow

finer tuning to the specific signal properties. The main

observation of Coifman et al. was that the wavelet transform

enforced a very specific time-frequency structure, with high

frequency atoms having small supports and low frequency

atoms having large supports. Indeed, this choice has deep
connections to the behavior of real natural signals; however,

for specific signals, better partitionings may be possible. The

wavelet packet dictionary essentially unifies all dyadic time-

frequency atoms which can be derived from a specific pair of

scaling function and mother wavelet, so atoms of different

frequencies can come in an array of time supports. Out of

this large collection, the wavelet packet transform allows to

efficiently select an optimized orthogonal sub-dictionary for
any given signal, with the standard wavelet basis being just

one of an exponential number of options. The process was

thus named by the authors a Best Basis search. The wavelet

packet transform is, by definition, at least as good as wavelets

in terms of coding efficiency. However, we note that the

multi-dimensional wavelet packet transform remains a

separable and non-oriented transform, and thus does not

generally provide a substantial improvement over wavelets
for images.

Geometric Invariance and Overcompleteness: In 1992,

Simoncelli et al. [36] published a thorough work advocating

a dictionary property they termed shiftability, which de-

scribes the invariance of the dictionary under certain ge-

ometric deformations, e.g., translation, rotation or scaling.

Indeed, a well known weakness of the wavelet transform is
its strong translation-sensitivity, as well as rotation-

sensitivity in higher dimensions. The authors concluded

that achieving these properties required abandoning

orthogonality in favor of overcompleteness, since the critical

number of atoms in an orthogonal transform was simply

insufficient. In the same work, the authors developed an

overcomplete oriented wavelet transformVthe steerable
wavelet transformVwhich was based on their previous work
on steerable filters and consisted of localized 2-D wavelet

atoms in many orientations, translations and scales.

For the basic 1-D wavelet transform, translation-

invariance can be achieved by increasing the sampling

density of the atoms. The stationary wavelet transform, also

known as the undecimated or non-subsampled wavelet

transform, is obtained from the orthogonal transform by

eliminating the sub-sampling and collecting all translations
of the atoms over the signal domain. The algorithmic

foundation for this was laid by Beylkin in 1992 [37], with

the development of an efficient algorithm for computing

the undecimated transform. The stationary wavelet trans-

form was indeed found to substantially improve signal

recovery compared to orthogonal wavelets, and its benefits

were independently demonstrated in 1995 by Nason and

Silverman [38] and Coifman and Donoho [39].

C. From Transforms to Dictionaries
By the second half of the 1990’s, most of the concepts for

designing effective transforms were laid out. At the same

time, a conceptual change of a different sort was gradually

taking place. In their seminal work from 1993, Mallat and

Zhang [40] proposed a novel sparse signal expansion scheme

based on the selection of a small subset of functions from a
general overcomplete dictionary of functions. Shortly after,

Chen, Donoho and Saunders published their influential

paper on the Basis Pursuit [41], and the two works signalled

the beginning of a fundamental move from transforms to

dictionaries for sparse signal representation. An array of

works since has formed a wide mathematical and algorith-

mic foundation of this new field, and established it as a

central tool in modern signal processing [42].
The seemingly minor terminological change enclosed

the idea that a signal was allowed to have more than one
description in the representation domain, and that selecting

the best one depended on the task. Moreover, it de-coupled

the processes of designing the dictionary and coding the

signal: indeed, given the dictionaryVthe collection of

elemental signalsVdifferent cost functions could be
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proposed in (3), and different coding methods could be
applied.

The first dictionaries to be used in this way were the

existing transformsVsuch as the Fourier, wavelet, STFT,

and Gabor transforms, see e.g., [40], [41]. As an immediate

consequence, the move to a dictionary-based formalism

provided the benefit of constructing dictionary mergers,

which are the unions of several simpler dictionaries; these

were proposed by Chen, Donoho and Saunders in [41], and
provide a simple way to increase the variety of features

representable by the dictionary.

D. Higher Dimensional Signals
The variety of dictionaries developed through the mid-

1990’s served one-dimensional signals relatively well.

However, the dictionaries for multi-dimensional signal

representation were still unsatisfying. Particularly frus-
trating, for instance, was the common knowledge that 2-D

piecewise-smooth signals could be described much more

efficiently using a simple piecewise-linear approximation

over an adaptive triangle grid, than using any existing

dictionary [5], [43].

In 1998, Donoho developed the wedgelet dictionary for

2-D signal representation [44], which bears some resem-

blance to the adaptive triangulation structure. The wedge-
let dictionary consists of constant-valued, axis-aligned

squares, bisected by straight lines, and spanning many

sizes and locations. Donoho showed that this dictionary is

optimal for piecewise-constant images with regular edge

discontinuities, and provided a quick (though non-optimal)

approximation technique. The elegant wedgelet construc-

tion, though too simplistic for many tasks, was adopted and

generalized by several researchers, leading to such struc-
tures as wavelet-wedgelets hybrids (wedgeprints) [45],

piecewise-linear wedgelets (platelets) [46], and higher-

dimensional wedgelets (surflets) [47].

In parallel to the wedgelet transform, Candès and

Donoho introduced the ridgelet transform as a multi-

dimensional extension of the wavelet transform [48]. A

ridgelet atom is a translated and dilated wavelet in one

direction, and fixed in the orthogonal directions (similar to a
plane wave). The transform is proven to be optimal for

piecewise-smooth functions with plane discontinuities.

Indeed, the basic ridgelet dictionary is unsuitable for natural

signals due its lack of localization. However, with proper

localization and multi-scale extension, the dictionary forms

the core of the much more powerful curvelet transform [43],

[49], introduced by the authors soon after, and which

provides a comprehensive framework for representing multi-
dimensional signals. Similar efforts led to the development

of the contourlet, shearlet, and other transforms, which are

described in more detail in the next section.

E. Analytic Versus Trained Dictionaries
The dictionaries described so far all roughly fall under

the umbrella of Harmonic Analysis, which suggests

modeling interesting signal data by a more simple class of
mathematical functions, and designing an efficient repre-

sentation around this model. For example, the Fourier

dictionary is designed around smooth functions, while the

wavelet dictionary is designed around piecewise-smooth

functions with point singularities. The dictionaries of this

sort are characterized by an analytic formulation, and are

usually supported by a set of optimality proofs and error

rate bounds. An important advantage of this approach is
that the resulting dictionary usually features a fast implicit

implementation which does not involve multiplication by

the dictionary matrix. On the other hand, the dictionary

can only be as successful as its underlying model, and indeed,

these models tend to be over-simplistic compared to the

complexity of natural phenomena.

Through the 1980’s and 1990’s, Machine Learning tech-

niques were rapidly gaining interest, and promised to
confront this exact difficulty. The basic assumption behind

the learning approach is that the structure of complex

natural phenomena can be more accurately extracted directly
from the data than by using a mathematical description. One

direct benefit of this is that a finer adaptation to specific

instances of the data becomes possible, replacing the use of

generic models.

A key contribution to the area of dictionary learning
was provided by Olshausen and Field in 1996 [34]. In their

widely celebrated paper, the authors trained a dictionary

for sparse representation of small image patches collected

from a number of natural images. With relatively simple

algorithmic machinery, the authors were able to show a

remarkable resultVthe trained atoms they obtained were

incredibly similar to the mammalian simple-cell receptive

fields, which until then were only weakly explained via
Gabor filters. The finding was highly motivating to the

sparse representation community, as it demonstrated that

the single assumption of sparsity could account for a

fundamental biological visual behavior. Also, the results

demonstrated the potential in example-based methods to

uncover elementary structures in complex signal data.

The experiments of Olshausen and Field inspired a

series of subsequent works aimed at improving the
example-based training process. Towards the end of the

1990’s, these works mostly focused on statistical training

methods, which model the examples as random indepen-

dent variables originating from a sparse noisy source. With

X ¼ ½x1x2 . . . xn� denoting the data matrix, the statistical

approach suggests seeking for the dictionary which either

maximizes the likelihood of the data PðXjDÞ (Maximum
Likelihood estimation), e.g., [50], or maximizes the
posterior probability of the dictionary PðDjXÞ (Maximum
A-Posterior estimation), e.g., [51]. The resulting optimiza-

tion problems in these works are typically solved in an

Expectation-Maximization (EM) fashion, alternating esti-

mation of the sparse representations and the dictionary;

earlier works employed gradient descent or similar

methods for both tasks, while later ones employ more
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powerful sparse-coding techniques for the estimation of
the sparse representations.

III . ANALYTIC DICTIONARIESV
STATE-OF-THE-ART

Recent advances in analytic dictionary design have mostly

focused on the move to two and higher dimensions. Multi-

dimensional signals are significantly more complex than
one-dimensional ones due to the addition of orientation.

Also, the elementary singularities become curvesVor

manifolds in generalVrather than points, and thus have a

much more complex geometry to trace. In order to handle

these complex signals, new transforms that are both

localized and oriented have been developed.

Analytic dictionaries are typically formulated as tight
frames, meaning that DDTx ¼ x for all x, and therefore
the dictionary transpose can be used to obtain a

representation over the dictionary. The analytic approach

then proceeds by analyzing the behavior of the filter-set

DTx, and establishes decay rates and error bounds.

The tight frame approach has several advantages.

Analyzing the behavior of DT as an analysis operator

seems easier than deriving sparsity bounds in a synthesis

framework, and indeed, results obtained for the analysis
formulation also induce upper bounds for the synthesis

formulation. Another benefit is thatVwhen formulated

carefullyVthe algorithms for both analysis and synthesis

operators become nearly reversals, simplifying algorithm

design. Finally, the tight frame approach is beneficial in

that it simultaneously produces a useful structure for both

the analysis and synthesis frameworks, and has a mean-

ingful interpretation in both.
Sparse-coding in this case is typically done by com-

puting the analysis coefficients DTx, and passing them

through a non-linear shrinking operator. This method has

the advantage of providing a simple and efficient way to

achieve sparse representations over the dictionary, though

it is worth noting that from a pure synthesis point of view,

this process is sub-optimal, and one might benefit from

employing a more advanced sparse-coding technique, e.g.,
an iterated shrinkage technique [52], directly to the

expansion coefficients. Recent efforts in this direction

have led Yaghoobi et al. [91] to propose a parameter tuning

method for analytic dictionaries, which may further

improve their performance in sparse-coding processes.

A. Curvelets
The curvelet transform was introduced by Candès and

Donoho in 1999 [43], and was later refined into its present

form in 2003 [53]. When published, the transform

astonished the harmonic analysis community by achieving

what was then believed to be only possible with adaptive

representations: it could represent 2-D piecewise-smooth

functions with smooth curve discontinuities at an (essen-

tially) optimal rate.

The curvelet transform is formulated as a continuous
transform, with discretized versions developed for both

formulations [49], [53], [54]. Each curvelet atom is asso-
ciated with a specific location, orientation and scale. In the

2-D case, a curvelet atom is roughly supported over an

elongated elliptical region, and is oscillatory along its width

and smooth along its length, see Fig. 4. The curvelet atoms

are characterized by their specific anisotropic support,

which obeys a parabolic scaling law width 	 length2. As it

turns out, this property is useful for the efficient represen-

tation of smooth curves [55], and indeed several subsequent
transforms follow this path. In higher dimensions, the

curvelet atoms become flattened ellipsoids, oscillatory along

their short direction and smooth along the other directions

[53], [54], [56].

B. Contourlets
The curvelet transform offers an impressively solid

continuous construction and exhibits several useful math-

ematical properties. However, its discretization turns out to

be challenging, and the resulting algorithms are relatively

complicated. Also, current discretizations have relatively

high redundancies, which makes them more costly to use

and less applicable for tasks like compression.

With this in mind, Do and Vetterli proposed the

contourlet transform in 2002 [57], [58] as an alternative to
the 2-D curvelet transform. The transform was later refined

in 2006 by Lu and Do [59], and a multi-dimensional version,

named surfacelets, was also recently introduced [60].

The contourlet transform shares many of the character-

istics of the curvelet transform, including localization,

orientation, and parabolic scaling. However, as opposed to

curvelets, the contourlets are defined directly in the discrete
domain, and thus have a native and simple construction for
discrete signals. Also, the standard contourlet transform

has much lower redundancy, approximately in the range

[1.3,2.3] for the second-generation implementation [59],

compared to [2.8,7.2] for second-generation curvelets [53].

The contourlet transform implementation is based on a

pyramidal band-pass decomposition of the image followed

by a directional filtering stage. The resulting oriented

Fig. 4. Some curvelet atoms (left) and contourlet atoms (right).

Both represent the second version of the corresponding transform.
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atoms are elongated and oscillatory along their width, with
some visual resemblance to the curvelet atoms (see Fig. 4).

The main appeal of the transform is due to its simple

discrete formulation, its low complexity and reduced

redundancy. It should be noted, though, that while the

transform is well suited for tasks such as compression, its

aggressive sub-sampling has been noted to lead to artifacts

in signal reconstruction, in which case a translation-

invariant version of the transform is preferred [61], [62];
indeed, this option significantly increases redundancy and

complexity, though the simpler structure of the transform

remains.

C. Bandelets
The bandelet transform was proposed in 2005 by

Le Pennec and Mallat [63], with a second version intro-

duced soon after by Peyré and Mallat [64]. The bandelet

transform represents one of the most recent contributions

in the area of signal-adaptive transforms, and as such it

differs fundamentally from the non-adaptive curvelet and
contourlet transforms.

The idea behind the bandelet construction is to exploit

geometric regularity in the imageVspecifically edges and

directional phenomenaVin order to fit a specifically

optimized set of atoms to the image. The original bandelet

construction operates in the spatial domain, and is based

on an adaptive subdivision of the image to dyadic regions

according to the local complexity; in each region, a set of
skewed wavelets is matched to the image flow, in such a

way that the wavelet atoms essentially Bwrap-around[ the

edges rather than cross them. This process significantly

reduces the number of large wavelet coefficients, as these

typically emerge from the interaction of a wavelet atom

and a discontinuity.

The resulting set of atoms forms a (slightly) over-

complete set, which is specifically tailored for representing
the given image. In the second bandelet construction,

which is formulated in the wavelet domain, the transform is

further refined to produce an orthogonal set. In terms of

dictionaries, the bandelet transform selects a set of atoms

from a nearly infinite set, and in fact discretization is the

main source for limiting the size of this set. This is as

opposed to the wavelet packet transform, for instance,

where the complete set of atoms is not much larger than the

signal dimension. See Fig. 5 for an example of bandelets.

D. Other Analytic Dictionaries
Many additional analytic transforms have been devel-

oped during the past decade, some of which we mention

briefly. The complex wavelet transform [65], [66] is an
oriented and near-translation-invariant high-dimensional

extension of the wavelet transform, achieved through the

utilization of two mother wavelets satisfying a specific

relationship between them. Similar to the original wavelet

transform, the complex wavelet transform is efficient and

simple to implement, and the added phase information

delivers orientation sensitivity and other favorable prop-

erties. The shearlet transform [67]–[69] is a recently
proposed alternative to curvelets, which utilizes structured

shear operations rather than rotations to control orienta-

tion. Similar to curvelets, the shearlet transform is based

on a comprehensive continuous mathematical construc-

tion, and it shares many of the properties of the curvelet

transform while providing some attractive new features.

See Fig. 6 for some examples of complex wavelet and

shearlet atoms.
Recent adaptive dictionaries include the directionlet

transform [70], which is a discrete transform which cons-

tructs oriented and anisotropic wavelets based on local

image directionality, utilizing a specialized directional

grouping of the grid points for its numerical implementa-

tion. The grouplet transform [71] is a multi-scale adaptive

transform which essentially generalizes Haar wavelets to

arbitrary supports, based on image content regularity;
when applied in the wavelet domain, the transform bears

some resemblance to the second-generation bandelet

transform, and thus is referred to as grouped bandelets.

IV. DICTIONARY TRAININGV
STATE-OF-THE-ART

Dictionary training is a much more recent approach to

dictionary design, and as such, has been strongly influenced

Fig. 5. Left: the flow in a specific image region. Right: some bandelet

atoms adapted to the region. Note how the 1-D wavelets are skewed to

follow edges.

Fig. 6. Left: a few complex wavelet atoms (real part).

Right: a few shearlets.
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by the latest advances in sparse representation theory and
algorithms. The most recent training methods focus on ‘0

and ‘1 sparsity measures, which lead to simple formulations

and enable the use of recently developed efficient sparse-

coding techniques [41], [52], [72]–[75].

The main advantage of trained dictionaries is that they

lead to state-of-the-art results in many practical signal

processing applications. The costVas in the case of the

KLTVis a dictionary with no known inner structure or fast
implementation. Thus, the most recent contributions to

the field employ parametric models in the training process,

which produce structured dictionaries, and offer several

advantages. A different development, which we do not

discuss here, is the recent advancement in online
dictionary learning [76], [77], which allows training

dictionaries from very large sets of examples, and is found

to accelerate convergence and improve the trained result.

A. Method of Optimal Directions
The Method of Optimal Directions (MOD) was

introduced by Engan et al. in 1999 [78], [79], and was

one of the first methods to implement what is known

today as a sparsification process. Given a set of examples

X ¼ ½x1x2 . . . xn�, the goal of the MOD is to find a
dictionary D and a sparse matrix � which minimize the

representation error,

Arg min
D;�
kX�D�k2

F Subject to kGik0 � T 8i; (6)

where fGig represent the columns of �, and the ‘0 sparsity

measure k � k0 counts the number of non-zeros in the
representation. The resulting optimization problem is

combinatorial and highly non-convex, and thus we can

only hope for a local minimum at best. Similar to other

training methods, the MOD alternates sparse-coding and

dictionary update steps. The sparse-coding is performed

for each signal individually using any standard technique.

For the dictionary update, (6) is solved via the analytic

solution of the quadratic problem, given by D ¼ X�þ

with �þ denoting the Moore-Penrose pseudo-inverse.

The MOD typically requires only a few iterations to

converge, and is overall a very effective method. The

method suffers, though, from the relatively high complex-

ity of the matrix inversion. Several subsequent works have

thus focused on reducing this complexity, leading to more

efficient methods.

B. Union of Orthobases
Training a union-of-orthobases dictionary was pro-

posed in 2005 by Lesage et al. [80] as a means of designing

a dictionary with reduced complexity and which could be

more efficiently trained. The process also represents one of

the first attempts at training a structured overcomplete

dictionaryVa tight frame in this case. The model sug-
gests training a dictionary which is the concatenation of

k orthogonal bases, so D ¼ ½D1D2 . . . Dk� with the fDig
unitary matrices. Sparse-coding over this dictionary can

be performed efficiently through a Block Coordinate

Relaxation (BCR) technique [81].

A drawback of this approach is that the proposed model

itself is relatively restrictive, and in practice it does not

perform as well as more flexible structures. Interestingly,
there is a close connection between this structure and the

more powerful Generalized PCA model, described next. The

GPCA also arises from a union of orthogonal spaces model,

though it deviates from the classical sparse representation

paradigm. Identifying such relations could thus prove

valuable in enabling a merge between the two forces.

C. Generalized PCA
Generalized PCA, introduced in 2005 by Vidal, Ma and

Sastry [82], offers a different and very interesting

approach to overcomplete dictionary design. The GPCA

view is basically an extension of the original PCA for-

mulation, which approximates a set of examples by a low-

dimensional subspace. In the GPCA setting, the set of

examples is modeled as the union of several low-

dimensional subspacesVperhaps of unknown number
and variable dimensionalityVand the algebraic-geometric

GPCA algorithm determines these subspaces and fits

orthogonal bases to them.

The GPCA viewpoint differs from the sparsity model

described in (2), as each example in the GPCA setting is

represented using only one of the subspaces; thus, atoms

from different subspaces cannot jointly represent a signal.

This property has the advantage of limiting over-expres-
siveness of the dictionary, which characterizes other

overcomplete dictionaries; on the other hand, the dictio-

nary structure may be too restrictive for more complex

natural signals.

A unique property of the GPCA is that as opposed to

other training methods, it can detect the number of atoms in

the dictionary in certain settings. Unfortunately, the

algorithm may become very costly this way, especially
when the amount and dimension of the subspaces

increases. Indeed, intriguing models arise by merging the

GPCA viewpoint with the classical sparse representation

viewpoint: for instance, one could easily envision a model

generalizing (6) where several distinct dictionaries are

allowed to co-exists, and every signal is assumed to be

sparse over exactly one of these dictionaries.

D. The K-SVD Algorithm
The desire to efficiently train a generic dictionary for

sparse signal representation led Aharon, Elad and

Bruckstein to develop the K-SVD algorithm in 2005 [83].

The algorithm aims at the same sparsification problem as

the MOD (6), and employs a similar block-relaxation

approach. The main contribution of the K-SVD is that the
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dictionary update, rather than using a matrix inversion, is

performed atom-by-atom in a simple and efficient process.

Further acceleration is provided by updating both the
current atom and its associated sparse coefficients simul-

taneously. The result is a fast and efficient algorithm which

is less demanding than the MOD.

The K-SVD algorithm takes its name from the Singular-

Value-Decomposition (SVD) process that forms the core of

the atom update step, and which is repeated K times, as the

number of atoms. For a given atom k, the quadratic term in

(6) is rewritten as

X�
X
j6¼k

djG
T
j � dkG

T
k

������

������

2

F

¼ Ek � dkG
T
k

�� ��2

F
; (7)

where fGT
j g are the rows of �, and Ek is the residual matrix.

The atom update is obtained by minimizing (7) for dk and
GT

k via a simple rank-1 approximation of Ek. To avoid

introduction of new non-zeros in �, the update process is

performed using only the examples whose current rep-

resentations use the atom dk. Fig. 7 shows an example of

a K-SVD trained dictionary for 2-D image patch

representation.

In practice, the K-SVD is an effective method for

representing small signal patches. However, the K-SVD, as
well as the MOD, suffer from a few common weaknesses.

The high non-convexity of the problem means that the two

methods will get caught in local minima or even saddle

points. Also, the result of the training is a non-structured

dictionary which is relatively costly to apply, and therefore

these methods are suitable for signals of relatively small

size. In turn, in recent years several parametric dictionary

training methods have begun to appear, and aim to address
these issues by importing the strengths of analytic

dictionaries to the world of example-based methods.

E. Parametric Training Methods
There are several motivations for training a parametric

dictionary. By reducing the number of free parameters and

imposing various desirable properties on the dictionary,

we can accelerate convergence, reduce the density of local

minima, and assist in converging to a better solution. A
smaller number of parameters also improves generaliza-

tion of the learning process and reduces the number of

examples needed. Another advantage of the parameteri-

zation is that the dictionary will typically have a more

compact representation, and may lend itself to a more

efficient implementation. Finally, with the proper struc-

ture, a parameterized dictionary may be designed to

represent infinite or arbitrary-sized signals. Several param-
etric dictionary structures have been recently proposed,

and in the following we mention a few examples.

Translation-Invariant Dictionaries: Given a dictionary for

a fixed-size signal patch, a dictionary for an arbitrary-sized

signal can be constructed by collecting all the translations

of the trained atoms over the signal domain and forming a

large translation-invariant dictionary. Several training
methods for such structures have been proposed in recent

years. Blumensath and Davies [84] employed statistical

training methodology to design dictionaries for arbitrary

time series representation; Jost et al. [85] developed a

learning process based on a sequential computation of the

dictionary atoms, promoting de-correlation of the trained

atoms; and the MOD has been extended by Engan et al. [86]

to translation-invariant and optionally linearly-constrained
dictionary training, which they successfully applied to

electrocardiogram (ECG) recordings.

A very different approach to translation-invariance was

recently proposed by Aharon and Elad in [87]. In the 2-D

case, their proposed signature dictionary is a small image in

which each N � N sub-block constitutes an atom. Thus,

assuming a periodic extension, an M�M signature

dictionary stores M2 atoms in a compact structure.
Compared to the previous methods, this approach does not

aim to produce a dictionary for arbitrary-sized signals, and

instead, describes an interesting form of invariance at the

block level. Indeed, a possible extension of this model

could allow extraction of variable-sized atoms from the

signature image, though this option remains for future

research. An example of a trained signature dictionary is

shown in Fig. 7.

Multiscale Dictionaries: Training dictionaries with multi-

scale structures is an exciting and challenging option which

has only been partially explored. In [88], Sallee and

Olshausen proposed a pyramidal wavelet-like signal expan-

sion, generated from the dilations and translations of a set of

elementary small trained patches. The training method

learns the elementary patches as well as a statistical model of
the coefficients. In simulations, the structure is found to

compete favorably with other pyramidal-based transforms.

While the results of this method seem slightly constrained by

the small number of elementary functions trained, it is likely

to substantially benefit from increasing the overcomplete-

ness and employing some more advanced sparse-coding

machinery.

Fig. 7. Left: atoms from a K-SVD dictionary trained on 12 � 12 image

patches from Lena. Right: a signature dictionary, trained on the

same image.
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A different and interesting contribution in this
direction is the semi-multiscale extension of the K-SVD

introduced in 2008 by Mairal, Sapiro and Elad [89]. The

semi-multiscale structure is obtained by arranging several

fixed-sized learned dictionaries of different scales over a

dyadic grid. The resulting structure is found to deliver a

pronounced improvement over the single-scale K-SVD

dictionary in applications such as denoising and inpaint-

ing, producing nearly state-of-the-art denoising perfor-
mance. The main significance of this work, though, is the

potential it demonstrates in going to multi-scale learned

structures. Such results are highly encouraging, and

motivate further research into multi-scale training models.

Sparse Dictionaries: One of the most recent contributions

to the field of parametric dictionaries, specifically aimed at

merging the advantages of trained and analytic dictionaries,
was recently presented by Rubinstein, Zibulevsky and Elad

[90]. Their proposed sparse dictionary structure takes the

form D ¼ BA, where B is some fixed analytic dictionary

with a fast computation, and A is a sparse matrix. Thus, the

dictionary is compactly expressed and has a fast implemen-

tation, while adaptivity is provided through the matrix A.

Also, the parameterization is shown to improve learning

generalization and to reduce the training set size. Thus, the
training method can be used to learn larger dictionaries than

the MOD or K-SVD, e.g., for large image patches, or 3-D

signal patches. Nonetheless, we note that the sparse

dictionary structure, as most other models, remains targeted

at fixed-size signals. Indeed, further work is required to

design more general dictionary models which will truly

capture the benefits of both analytic and example-based

worlds.

V. CONCLUSION

Dictionary design has significantly evolved over the past

decades, beginning with simple orthogonal transforms and

leading to the complex overcomplete analytic and trained

dictionaries now defining the state-of-the-art. Substantial
conceptual advancement has been made in understanding

the elements of an efficient dictionary designVmost

notably adaptivity, multi-scale, geometric invariance, and

overcompleteness. However, with a wealth of tools already

developed, much work remains to be done; indeed, the

various components have yet to be neatly merged into a

single efficient construct. Many future research directions

have been mentioned in the text, and demonstrate the
viability and vividness of the field as well as the large

number of challenges that still await. Of specific interest,

we highlight the strong need for a multi-scale structured

dictionary learning paradigm, as well as methods to use

such dictionaries in applications, which will clearly be the

focus of much research in the near future. h

Acknowledgment

The authors would like to thank the anonymous

reviewers for their valuable and enlightening comments,

which substantially enhanced the final result.

Images in this paper were generated using several

software packages. The authors would like to acknowledge

the writers of these packages and thank them for their

contribution and support of reproducible research. In order
of appearance: Images of the curvelet transform were gen-

erated using the CurveLab toolbox curtesy of Candès,

Demanet, Donoho and Ying (http://www.curvelet.org);

images of the contourlet transform were generated using

the SurfBox toolbox curtesy of Y. M. Lu (http://lcav.epfl.

ch/~lu); images related to the bandelet transform were

generated using the Bandelet Toolbox curtesy of G. Peyré
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