
Data Min Knowl Disc (2011) 22:31–72
DOI 10.1007/s10618-010-0175-9

A survey of hierarchical classification across different
application domains

Carlos N. Silla Jr. · Alex A. Freitas

Received: 24 February 2009 / Accepted: 11 March 2010 / Published online: 7 April 2010
© The Author(s) 2010

Abstract In this survey we discuss the task of hierarchical classification. The
literature about this field is scattered across very different application domains and
for that reason research in one domain is often done unaware of methods developed
in other domains. We define what is the task of hierarchical classification and discuss
why some related tasks should not be considered hierarchical classification. We also
present a new perspective about some existing hierarchical classification approaches,
and based on that perspective we propose a new unifying framework to classify the
existing approaches. We also present a review of empirical comparisons of the existing
methods reported in the literature as well as a conceptual comparison of those methods
at a high level of abstraction, discussing their advantages and disadvantages.

Keywords Hierarchical classification · Tree-structured class hierarchies ·
DAG-structured class hierarchies

1 Introduction

A very large amount of research in the data mining, machine learning, statistical pattern
recognition and related research communities has focused on flat classification prob-
lems. By flat classification problem we are referring to standard binary or multi-class
classification problems. On the other hand, many important real-world classification
problems are naturally cast as hierarchical classification problems, where the clas-
ses to be predicted are organized into a class hierarchy—typically a tree or a DAG
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(Direct Acyclic Graph). The task of hierarchical classification, however, needs to be
better defined, as it can be overlooked or confused with other tasks, which are often
wrongly referred to by the same name. Moreover, the existing literature that deals
with hierarchical classification problems is usually scattered across different applica-
tion domains which are not strongly connected with each other. As a result, researchers
in one application domain are often unaware of methods developed by researchers in
another domain. Also, there seems to be no standards on how to evaluate hierarchical
classification systems or even how to setup the experiments in a standard way.

The contributions of this paper are:

– To clarify what the task of hierarchical classification is, and what it is not.
– To propose a unifying framework to classify existing and novel hierarchical classi-

fication methods, as well as different types of hierarchical classification problems.
– To perform a cross-domain critical survey, in order to create a taxonomy of hierar-

chical classification systems, by identifying important similarities and differences
between the different approaches, which are currently scattered across different
application domains.

– To suggest some experimental protocols to be undertaken when performing
hierarchical classification experiments, in order to have a better understanding
of the results. For instance, many authors claim that some hierarchical classifica-
tion methods are better than others, but they often use standard flat classification
evaluation measures instead of using hierarchical evaluation measures. Also, in
some cases, it is possible to overlook what would be interesting to compare, and
authors often compare their hierarchical classification methods only against flat
classification methods, although the use of a baseline hierarchical method is not
hard to implement and would offer a more interesting experimental comparison.

This survey seems timely as different fields of research are more and more using an
automated approach to deal with hierarchical information, as hierarchies (or taxono-
mies) are a good way to help organize vast amounts of information. The first issue that
will be discussed in this paper (Sect. 2) is precisely the definition of the hierarchical
classification task. After clearly defining the task, we classify the existing approaches
in the literature according to three different broad types of approach, based on the
underlying methods. These approaches can be classified as: flat, i.e., ignoring the class
hierarchy (Sect. 3); local (Sect. 4) or global (Sect. 5). Based on the new understanding
about these approaches we present a unifying framework to classify hierarchical clas-
sification methods and problems (Sect. 6). A summary, a conceptual comparison and a
review of empirical comparisons reported in the literature about these three approaches
is presented in Sect. 7. Section 8 presents some major applications of hierarchical clas-
sification methods; and finally in Sect. 9 we present the conclusions of this work.

2 What is hierarchical classification?

In order to learn about hierarchical classification, one might start searching for papers
with the keywords “hierarchical” and “classification”; however, this might be mis-
leading. One of the reasons for this is that, due to the popularity of SVM (Support
Vector Machine) methods in the machine learning community (which were originally
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developed for binary classification problems), different researchers have developed
different methods to deal with multi-class classification problems. The most common
are the One-Against-One and the One-Against-All schemes (Lorena and Carvalho
2004). A less known approach consists of dividing the problem in a hierarchical way
where classes which are more similar to one another are grouped together into meta-
classes, resulting in a Binary Hierarchical Classifier (BHC) (Kumar et al. 2002). For
instance, in Chen et al. (2004) the authors modified the standard SVM, creating what
they called a H-SVM (Hierarchical SVM), based on this hierarchical problem decom-
position approach.

When we consider the use of meta-classes in the pattern recognition field, they
are usually manually assigned, like in Koerich and Kalva (2005), where handwritten
letters with the same curves in uppercase and lowercase format (e.g. “o” and “O” will
be represented by the same meta-class). An automated method for the generation of
meta-classes was recently proposed by Freitas et al. (2008). At first glance the use of
meta-classes (and their automatic generation) seems to be related to the hierarchical
problem decomposition approach, as one can view the use of meta-classes as a two-
level hierarchy where leaf classes are grouped together by similarity into intermediate
classes (the meta-classes). This issue is interesting and deserves further investigation,
but is beyond the scope of this paper. In this paper we take the perspective that this
kind of approach is not considered to be a hierarchical classification approach, because
it creates new (meta-)classes on the fly, instead of using a pre-established taxonomy.
In principle a classification algorithm is not supposed to create new classes, which is
related to clustering.

In this paper we are interested in approaches that cope with a pre-defined class
hierarchy, instead of creating one from the similarity of classes within data (which
would lead to higher-level classes that could be meaningless to the user). Let us elabo-
rate on this point. There are application domains where the internal (non-leaf) nodes of
the class hierarchy can be chosen based on data (usually in the text mining application
domain), like in Sasaki and Kita (1998), Punera et al. (2005), Li et al. (2007), Hao et al.
(2007), where they build the hierarchy during training by using some sort of hierar-
chical clustering method, and then classify new test examples by using a hierarchical
approach. However, in other domains, like protein function prediction in bioinformat-
ics, just knowing that classes A and B are similar can be misleading, as proteins with
similar characteristics (sequences of amino acids) can have very different functions
and vice-versa (Gerlt and Babbitt 2000). Therefore, in this work, we are interested only
in hierarchical classification (a type of supervised learning). Hierarchical clustering
(a type of unsupervised learning) is out of the scope of the paper.

Hierarchical classification can also appear under the name of Structured Classifi-
cation (Seeger 2008; Astikainen et al. 2008). However, the research field of structured
classification involves many different types of problems which are not hierarchical
classification problems, e.g. Label Sequence Learning (Altun and Hofmann 2003;
Tsochantaridis et al. 2005). Therefore, hierarchical classification can be seen as a par-
ticular type of structured classification problem, where the output of the classification
algorithm is defined over a class taxonomy; whilst the term structured classification
is broader and denotes a classification problem where there is some structure (hierar-
chical or not) among the classes.
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It is important then to define what exactly is a class taxonomy. Wu et al. (2005) have
defined a class taxonomy as a tree structured regular concept hierarchy defined over a
partially order set (C,≺), where C is a finite set that enumerates all class concepts in
the application domain, and the relation ≺ represents the “IS-A” relationship. Wu et al.
(2005) define the “IS-A” relationship as both anti-reflexive and transitive. However,
we prefer to define the “IS-A” relationship as asymmetric, anti-reflexive and transitive:

– The only one greatest element “R” is the root of the tree.
– ∀ci , c j ∈ C, i f ci ≺ c j then c j �≺ ci .
– ∀ci ∈ C, ci �≺ ci .
– ∀ci , c j , ck ∈ C, ci ≺ c j and c j ≺ ck imply ci ≺ ck .

This definition, although originally proposed for tree structured class taxonomies,
can be used to define DAG structured class taxonomies as well. Ruiz and Srinivasan
(2002) give a good example of the asymmetric and transitive relations: The “IS-A”
relation is asymmetric (e.g. all dogs are animals, but not all animals are dogs) and tran-
sitive (e.g., all pines are evergreens, and all evergreens are trees; therefore all pines
are trees).

Note that, for the purposes of this survey, any classification problem with a class
structure satisfying the aforementioned four properties of the IS-A hierarchy can be
considered as a hierarchical classification problem, and in general the hierarchical
classification methods surveyed in this work assume (explicitly or implicitly) the
underlying class structure satisfies those problems. In the vast majority of works on
hierarchical classification, the actual class hierarchy in the underlying problem domain
can indeed be called a IS-A hierarchy from a semantical point of view. However, in
a few cases the semantics of the underlying class hierarchy might be different, but as
long as the aforementioned four properties are satisfied, we would consider the target
problem as a hierarchical classification one. For instance, the class taxonomy asso-
ciated with cellular localization in the Gene Ontology (an ontology which is briefly
discussed in Sect. 8.2) is essentially, from a semantical point of view, a PART-OF class
hierarchy, but it still satisfies the four properties of the aforementioned definition of a
IS-A hierarchy, so we consider the prediction of cellular location classes according to
that class hierarchy as a hierarchical classification problem.

Whether the taxonomy is organized into a tree or a DAG influences the degree
of difficulty of the underlying hierarchical classification problem. Notably, as it will
be seen in Sect. 7, most of the current literature focus on working with trees as it
is an easier problem. One of the main contributions of this survey is to organize the
existing hierarchical classification approaches into a taxonomy, based on their essen-
tial properties, regardless of the application domain. One of the main problems, in
order to do this, is to deal with all the different terminology that has already been pro-
posed, which is often inconsistent across different works. In order to understand these
essential properties, is important to clarify a few aspects of hierarchical classification
methods.

Let us consider initially two types of conventional classification methods that
cannot directly cope with hierarchical classes: binary and multi-class classifiers. First,
the main difference between a binary classifier and a multi-class classifier is that
the binary classifier can only handle two-class problems, whilst a multi-class clas-
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sifier can handle in principle any number of classes. Secondly, there are multi-class
classifiers that can also be multi-label, i.e. the answer from the classifier can be more
than one class assigned to a given example. Thirdly, since these types of classifi-
ers were not designed to deal with hierarchical classification problems, they will be
referred to as flat classification algorithms. Fourthly, in the context of hierarchical
classification most approaches could be called multi-label. For instance, considering
the hierarchical class structure presented in Fig. 1 (where R denotes the root node),
if the output of a classifier is class 2.1.1, it is natural to say that it also belongs to
classes 2 and 2.1, therefore having three classes as the output of the classifier. In
Tikk et al. (2004) this notion of multi-label is used and they call this a particular type
of multi-label classification problem. However, since this definition is trivial, as any
hierarchical approach could be considered multi-label in this sense, in this work we
will only consider a hierarchical classifier to be hierarchically multi-label if it can
assign more than one class at any given level of the hierarchy to a given example.
This distinction is particularly important, as a hierarchically multi-label classification
algorithm is more challenging to design than a hierarchically single-label one. Also,
recall that in hierarchical classification we assume that the relation between a node
and its parent in the class hierarchy is a “IS-A” relationship.

According to Freitas and de Carvalho (2007) and Sun and Lim (2001) hierarchical
classification methods differ in a number of criteria. The first criterion is the type of
hierarchical structure used. This structure is based on the problem structure and it
typically is either a tree or a DAG. Figure 2 illustrates these two types of structures.

Fig. 1 An example of a tree-based hierarchical class structure

Fig. 2 A simple example of a tree structure (left) and a DAG structure (right)
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The main difference between them is that in the DAG a node can have more than one
parent node.

The second criterion is related to how deep the classification in the hierarchy is
performed. That is, the hierarchical classification method can be implemented in a
way that will always classify a leaf node [which Freitas and de Carvalho (2007) refer
to as mandatory leaf-node prediction (MLNP) and Sun and Lim (2001) refer to as
virtual category tree] or the method can consider stopping the classification at any
node in any level of the hierarchy [which Freitas and de Carvalho (2007) refer to as
non-mandatory leaf node prediction and Sun and Lim (2001) refer to as category tree].
In this paper we will use the term (non-)mandatory leaf node prediction, which can
be naturally used for both tree-structured and DAG-structured class taxonomies.

The third criterion is related to how the hierarchical structure is explored. The
current literature often refers to top-down (or local) classifiers, when the system
employs a set of local classifiers; big-bang (or global) classifiers, when a single classi-
fier coping with the entire class hierarchy is used; or flat classifiers, which ignore the
class relationships, typically predicting only the leaf nodes. However, a closer look at
the existing hierarchical classification methods reveals that:

1. The top-down approach is not a full hierarchical classification approach by itself,
but rather a method for avoiding or correcting inconsistencies in class prediction
at different levels, during the testing (rather than training) phase;

2. There are different ways of using local information to create local classifiers, and
although most of them are referred to as top-down in the literature, they are very
different during the training phase and slightly different in the test phase;

3. Big-bang (or global) classifiers are trained by considering the entire class hierar-
chy at once, and hence they lack the kind of modularity for local training of the
classifier that is a core characteristic of the local classifier approach.

These are the main points which will be discussed in detail in the next four sections.

3 Flat classification approach

The flat classification approach, which is the simplest one to deal with hierarchical
classification problems, consists of completely ignoring the class hierarchy, typically
predicting only classes at the leaf nodes. This approach behaves like a traditional classi-
fication algorithm during training and testing. However, it provides an indirect solution
to the problem of hierarchical classification, because, when a leaf class is assigned to
an example, one can consider that all its ancestor classes are also implicitly assigned
to that instance (recall that we assume a “IS-A” class hierarchy).

However, this very simple approach has the serious disadvantage of having to build
a classifier to discriminate among a large number of classes (all leaf classes), without
exploring information about parent-child class relationships present in the class hierar-
chy. Figure 3 illustrates this approach. We use here the term flat classification approach,
as it seems to be the most commonly used term in the existing literature, although in
Burred and Lerch (2003) the authors refer to this approach as “the direct approach”,
while in Xiao et al. (2007) this approach is referred to as a “global classifier”—which
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Fig. 3 Flat classification approach using a flat multi-class classification algorithm to always predict the
leaf nodes

is misleading as they are referring to this naïve flat classification algorithm, and the
term global classifier is often used to refer to the “big-bang” approach (Sect. 5).

In Barbedo and Lopes (2007) the authors refer to this approach as a “bottom-up”
approach. They justify this term as follows: “The signal is firstly classified according
to the basic genres, and the corresponding upper classes are consequences of this first
classification (bottom-up approach).” In this paper, however, we prefer to use the term
flat classification to be consistent with the majority of the literature.

Considering the different types of class taxonomies (tree or DAG), this approach
can cope with both of them as long as the problem is a mandatory-leaf node pre-
diction problem, as it is incapable of handling non-mandatory leaf node prediction
problems. In this approach training and testing proceed in the same way as in standard
(non-hierarchical) classification algorithms.

4 Local classifier approaches

In the seminal work of Koller and Sahami (1997), the first type of local classifier
approach (also known as top-down approach in the literature) was proposed. From
this work onwards, many different authors used augmented versions of this approach
to deal with hierarchical classification problems. However, the important aspect here
is not that the approach is top-down (as it is commonly called), but rather that the hier-
archy is taken into account by using a local information perspective. The idea behind
this reasoning is that in the literature there are several papers that employ this local
information in different ways. These approaches, therefore, can be grouped based on
how they use this local information and how they build their classifiers around it. More
precisely, there seems to exist three standard ways of using the local information: a
local classifier per node (LCN), a local classifier per parent node (LCPN) and a local
classifier per level (LCL). In the following subsections we discuss each one of them in
detail. Also note that unless specified otherwise, the discussion will assume a single
label tree-structured class hierarchy and mandatory leaf node prediction.
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It should be noted that, although the three types of local hierarchical classification
algorithms discussed in the next three sub-sections differ significantly in their training
phase, they share a very similar top-down approach in their testing phase. In essence, in
this top-down approach, for each new example in the test set, the system first predicts
its first-level (most generic) class, then it uses that predicted class to narrow the choices
of classes to be predicted at the second level (the only valid candidate second-level
classes are the children of the class predicted at the first level), and so on, recursively,
until the most specific prediction is made.

As a result, a disadvantage of the top-down class-prediction approach (which is
shared by all the three types of local classifiers discussed next) is that an error at a
certain class level is going to be propagated downwards the hierarchy, unless some
procedure for avoiding this problem is used. If the problem is non-mandatory leaf
node prediction, a blocking approach (where an example is passed down to the next
lower level only if the confidence on the prediction at the current level is greater than a
threshold) can avoid that misclassifications are propagated downwards, at the expense
of providing the user with less specific (less useful) class predictions. Some authors use
methods to give better estimates of class probabilities, like shrinkage (McCallum et al.
1998) and isotonic smoothing (Punera and Ghosh 2008). The issues of non-mandatory
leaf node prediction and blocking are discussed in Sect. 4.4.

4.1 Local classifier per node approach

This is by far the most used approach in the literature. It often appears under the name
of a top-down approach, but as we mentioned earlier, we shall see why this is not a
good name as the top-down approach is essentially a method to avoid inconsistencies
in class predictions at different levels in the class hierarchy. The LCN approach con-
sists of training one binary classifier for each node of the class hierarchy (except the
root node). Figure 4 illustrates this approach.

Fig. 4 Local classifier per node approach (circles represent classes and dashed squares with round corners
represent binary classifiers)
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Table 1 Notation for negative
and positive training examples

Symbol Meaning

T r The set of all training examples

T r+(c j ) The set of positive training examples of c j

T r−(c j ) The set of negative training examples of c j

↑ (c j ) The parent category of c j

↓ (c j ) The set of children categories of c j

⇑ (c j ) The set of ancestor categories of c j

⇓ (c j ) The set of descendant categories of c j

↔ (c j ) The set of sibling categories of c j

∗(c j ) Denotes examples whose most specific known class is c j

There are different ways to define the set of positive and negative examples for
training the binary classifiers. In the literature most works often use one approach
and studies like Eisner et al. (2005) and Fagni and Sebastiani (2007) where differ-
ent approaches are compared are not common. In the work of Eisner et al. (2005)
the authors identify and experiment with four different policies to defining the set of
positive and negative examples. In Fagni and Sebastiani (2007) the authors focus on
the selection of the negative examples and empirically compare four policies (two
standard ones compared with two novel ones). However the novel approaches are
limited to text categorization problems and achieved similar results to the standard
approaches; and for that reason they are not further discussed in this paper. The nota-
tion used to define the sets of positive and negative examples is based on the one used
in Fagni and Sebastiani (2007) and is presented in Table 1.

– The “exclusive” policy [as defined by Eisner et al. (2005)]: T r+(c j ) = ∗(c j ) and
T r−(c j ) = T r \ ∗ (c j ). This means that only examples explicitly labeled as c j as
their most specific class are selected as positive examples, while everything else
is used as negative examples. For example, using Fig. 4, for c j = 2.1, T r+(c2.1)

consists of all examples whose most specific class is 2.1; and T r−(c2.1) consists
of the set of examples whose most specific class is 1, 1.1, 1.2, 2, 2.1.1, 2.1.2, 2.2,
2.2.1 or 2.2.2. This approach has a few problems. First, it does not consider the
hierarchy to create the local training sets. Second, it is limited to problems where
partial depth labeling instances are available. By partial depth labeling instances
we mean instances whose class label is known just for shallower levels of the
hierarchy, and not for deeper levels. Third, using the descendant nodes of c j as
negative examples seems counter-intuitive considering that examples who belong
to class ⇓ (c j ) also implicitly belong to class c j according to the “IS-A” hierarchy
concept.

– The “less exclusive” policy [as defined by Eisner et al. (2005)]: T r+(c j ) = ∗(c j )

and T r−(c j ) = T r \ ∗ (c j )∪ ⇓ (c j ). In this case, using Fig. 4 as example,
T r+(c2.1) consists of the set of examples whose most specific class is 2.1; and
T r−(c2.1) consists of the set of examples whose most specific class is 1, 1.1,
1.2, 2, 2.2, 2.2.1 or 2.2.2. This approach avoids the aforementioned first and third
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problems of the exclusive policy, but it is still limited to problems where partial
depth labeling instances are available.

– The “less inclusive” policy [as defined by Eisner et al. (2005), it is the same as the
“ALL” policy defined by Fagni and Sebastiani (2007)]: T r+(c j ) = ∗(c j )∪ ⇓ (c j )

and T r−(c j ) = T r \ ∗ (c j )∪ ⇓ (c j ). In this case T r+(c2.1) consists of the set of
examples whose most specific class is 2.1, 2.1.1 or 2.1.2; and T r−(c2.1) consists
of the set of examples whose most specific class is 1, 1.1, 1.2, 2, 2.2, 2.2.1 or 2.2.2.

– The “inclusive” policy [as defined by Eisner et al. (2005)]: T r+(c j ) = ∗(c j )∪ ⇓
(c j ) and T r−(c j ) = T r \ ∗ (c j )∪ ⇓ (c j )∪ ⇑ (c j ). In this case T r+(c2.1) is the
set of examples whose most specific class is 2.1, 2.1.1 or 2.1.2; and T r−(c2.1)

consists of the set of examples whose most specific class is 1, 1.1, 1.2, 2.2, 2.2.1
or 2.2.2.

– The “siblings” policy [as defined by Fagni and Sebastiani (2007), and which Ceci
and Malerba (2007) refers to as “hierarchical training sets”]: T r+(c j ) = ∗(c j )∪ ⇓
(c j ) and T r−(c j ) =↔ (c j )∪ ⇓ (↔ (c j )). In this case T r+(c2.1) consists of the
set of examples whose most specific class is 2.1, 2.1.1 or 2.1.2; and T r−(c2.1)

consists of the set of examples whose most specific class is 2.2, 2.2.1, 2.2.2.
– The “exclusive siblings” policy [as defined by Ceci and Malerba (2007) and referred

to as “proper training sets”]: T r+(c j ) = ∗(c j ) and T r−(c j ) =↔ (c j ). In this
case T r+(c2.1) consists of the set of examples whose most specific class is 2.1;
and T r−(c2.1) consists of the set of examples whose most specific class is 2.2.

It should be noted that in the aforementioned policies for negative and positive
training examples, we have assumed that the policies defined in Fagni and Sebastiani
(2007) follow the usual approach of using as positive training examples all the exam-
ples belonging to the current class node (∗(c j )) and all of its descendant classes
(⇓ (c j )). Although this is the most common approach, several other approaches can
be used, as shown by Eisner et al. (2005). In particular, the exclusive and less exclusive
policies use as positive examples only the examples whose most specific class is the
current class, without using the examples whose most specific class is a descendant
from the current class in the hierarchy. It should be noted that the aim of the work of
Eisner et al. (2005) was to evaluate different ways of creating the positive and negative
training sets for predicting functions based on the Gene Ontology, but it seems that
they overlooked the use of the siblings policy which is common in the hierarchical
text classification domain. Given the above discussion, one can see that it is important
that authors be clear on how they select both positive and negative examples in the
local hierarchical classification approach, since so many ways of defining positive and
negative examples are possible, with subtle differences between some of them.

Concerning which approach one should use, Eisner et al. (2005) note that as the
classifier becomes more inclusive (with more positive training examples) the classifiers
perform better. Their results (using F-measure as a measure of performance) compar-
ing the different measures are: Exclusive: 0.456, Less exclusive: 0.528, Less inclusive:
0.696 and Inclusive: 0.697. In the experiments of Fagni and Sebastiani (2007), where
they compare the siblings and less-inclusive policies, concerning predictive accuracy
there is no clear winner. However, they note that the siblings policy uses considerably
less data in comparison with the less-inclusive policy, and since they have the same
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accuracy, that is the one that should be used. In any case, more research, involving a
wider variety of datasets, would be useful to better characterise the relative strengths
and weakness of the aforementioned different policies in practice.

During the testing phase, regardless of how positive and negative examples were
defined, the output of each binary classifier will be a prediction indicating whether or
not a given test example belongs to the classifier’s predicted class. One advantage of
this approach is that it is naturally multi-label in the sense that it is possible to predict
multiple labels per class level, in the case of multi-label problems. Such a natural
multi-label prediction is achieved using just conventional single-label classification
algorithms, avoiding the complexities associated with the design of a multi-label clas-
sification algorithm (Tsoumakas and Katakis 2007). In the case of single-label (per
level) problems one can enforce the prediction of a single class label per level by
assigning to a new test example just the class predicted with the greatest confidence
among all classifiers at a given level—assuming classifiers output a confidence mea-
sure of their prediction. This approach has, however, a disadvantage. Considering the
example of Fig. 4 it would be possible, using this approach, to have an output like class
1 = false and class 1.2 = true (since the classifiers for nodes 1 and 1.2 are independently
trained), which leads to an inconsistency in class predictions across different levels.
Therefore, if no inconsistency correction method is taken into account, this approach
is going to be prone to class-membership inconsistency.

As mentioned earlier, one of the current misconceptions in the literature is the
confusion between local information-based training of classifiers and the top-down
approach for class prediction (in the testing phase). Although they are often used
together, the local information-based training approach is not necessarily coupled
with the top-down approach, as a number of different inconsistency correction meth-
ods can be used to avoid class-membership inconsistency during the test phase. Let
us now review the existing inconsistency correction methods for the LCN approach.

The class-prediction top-down approach seems to have been originally proposed
by Koller and Sahami (1997), and its essential characteristic is that it consists of
performing the testing phase in a top-down fashion, as follows. For each level of the
hierarchy (except the top level), the decision about which class is predicted at the cur-
rent level is based on the class predicted at the previous (parent) level. For example,
at the top level, suppose the output of the local classifier for class 1 is true, and the
output of the local classifier for class 2 is false. At the next level, the system will
only consider the output of classifiers predicting classes which are children of class
1. Originally, the class-prediction top-down method was forced to always predict a
leaf node (Koller and Sahami 1997). When considering a non-mandatory leaf-node
prediction (NMLNP) problem, the class-prediction top-down approach has to use a
stopping criterion that allows an example to be classified just up to a non-leaf class
node. This extension might lead to the blocking problem, which will be discussed in
Sect. 4.4.

Besides the class-prediction top-down approach, other methods were proposed to
deal with inconsistencies generated by the LCN approach. One such method con-
sists of stopping the classification once the binary classifier for a given node gives
the answer that the unseen example does not belong to that class. For example, if the
output for the binary classifier of class 2 is true, and the outputs of the binary classifiers

123



42 C. N. Silla Jr., A. A. Freitas

for classes 2.1 and 2.2 are false, then this approach would ignore the answer of all the
lower level classifiers predicting classes that are descendant of classes 2.1 and 2.2 and
output the class 2 to the user. By doing this, the class predictions respect the hierarchy
constraints. This approach was proposed by Wu et al. (2005) and was referred to as
“Binarized Structured Label Learning” (BSLL).

In Dumais and Chen (2000) the authors propose two class-membership inconsis-
tency correction methods based on thresholds. In order for a class to be assigned to a
test example, the probabilities for the predicted class were used. In the first method,
they use a boolean condition where the posterior probability of the classes at the first
and second levels must be higher than a user specified threshold, in the case of a two-
level class hierarchy. The second method uses a multiplicative threshold that takes into
account the product of the posterior probability of the classes at the first and second
levels. For example, let us suppose that, for a given test example, the posterior prob-
ability for each class in the first two levels in Fig. 4 were: p(c1) = 0.6, p(c2) = 0.2,
p(c1.1) = 0.55, p(c1.2) = 0.1, p(c2.1) = 0.2, p(c2.2) = 0.3. Considering a threshold
of 0.5, by using the boolean rule the classes predicted for that test example would be
class 1 and class 1.1 as both classes have a posterior probability higher than 0.5. By
using the multiplicative threshold, the example would be assigned to class 1 but not
class 1.1, as the posterior probability of class 1× the posterior probability of class 1.1
is 0.33, which is below the multiplicative threshold of 0.5.

In the work of Barutcuoglu and DeCoro (2006), Barutcuoglu et al. (2006), DeCoro
et al. (2007) another class-membership inconsistency correction method for the LCN
approach is proposed. Their method is based on a Bayesian aggregation of the output
of the base binary classifiers. The method takes the class hierarchy into account by
transforming the hierarchical structure of the classes into a Bayesian network. In
Barutcuoglu and DeCoro (2006) two baseline methods for conflict resolution are pro-
posed: the first method propagates negative predictions downward (i.e. the negative
prediction at any class node is used to overwrite the positive predictions of its descen-
dant nodes) while the second baseline method propagates the positive predictions
upward (i.e. the positive prediction at any class node is used to overwrite the negative
predictions of all its ancestors). Note that the first baseline method is the same as the
BSLL.

Another approach for class-membership inconsistency correction based on the
output of all classifiers has been proposed by Valentini (2009), where the basic idea
is that by evaluating all the classifier nodes’ outputs it is possible to make consistent
predictions by computing a “consensus” probability using a bottom-up algorithm.

Xue et al. (2008) propose a strategy based on pruning the original hierarchy. The
basic idea is that when a new document is going to be classified it can possibly be
related to just some of the many hierarchical classification classes. Therefore, in order
to reduce the error of the top-down class-prediction approach, their method first com-
putes the similarity between the new document and all other documents, and creates a
pruned class hierarchy which is then used in a second stage to classify the document
using a top-down class-prediction approach.

Bennett and Nguyen (2009) propose a technique called expert refinements. The
refinement consists of using cross-validation in the training phase to obtain a better
estimation of the true probabilities of the predicted classes. The refinement technique
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is then combined with a bottom-up training approach, which consists of training the
leaf classifiers using refinement and passing this information to the parent classifiers.

So far we have discussed the LCN approach mainly in the context of a single label
(per level) problem with a tree-structured class hierarchy. In the multi-label hierarchi-
cal classification scenario, this approach is still directly employable, but some more
sophisticated method to cope with the different outputs of the classifiers should be
used. For example, in Esuli et al. (2008) the authors propose the TreeBoost.MH which
uses during training at each classification node the AdaBoost.MH base learner. Their
approach can also (optionally) perform feature selection by using information from
the sibling classes. In the context of a DAG, the LCN approach can still be used in a
natural way as well, as it has been done in Jin et al. (2008) and Otero et al. (2009).

4.2 Local classifier per parent node approach

Another type of local information that can be used, and it is also often referred to
as top-down approach in the literature, is the approach where, for each parent node
in the class hierarchy, a multi-class classifier (or a problem decomposition approach
with binary classifiers like One-Against-One scheme for Binary SVMs) is trained to
distinguish between its child nodes. Figure 5 illustrates this approach.

In order to train the classifiers the “siblings” policy, as well as the “exclusive
siblings” policy, both presented in Sect. 4.1, are suitable to be used.

During the testing phase, this approach is often coupled with the top-down class
prediction approach, but this coupling is not necessarily a must, as new class pre-
diction approaches for this type of local approach could be developed. Consider the
top-down class-prediction approach and the same class tree example of Fig. 5, and
suppose that the first level classifier assigns the example to the class 2. The second
level classifier, which was only trained with the children of the class node 2, in this case

Fig. 5 Local classifier per parent node (circles represent classes and dashed squares with round corners in
parent nodes represent multi-class classifiers—predicting their child classes)
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2.1 and 2.2, will then make its class assignment (and so on, if deeper-level classifiers
were available), therefore avoiding the problem of making inconsistent predictions
and respecting the natural constrains of class membership.

An extension of this type of local approach known as the “selective classifier”
approach was proposed by Secker et al. (2007). The authors refer to this method as the
Selective Top-Down approach, but it is here re-named to “selective classifier” approach
to emphasize that what are being selected are the classifiers, rather than attributes as in
attribute (feature) selection methods. In addition, we prefer to reserve the term “top-
down” to the class prediction method during the testing phase, as explained earlier.
Usually, in the LCPN approach the same classification algorithm is used throughout
all the class hierarchy. In Secker et al. (2007), the authors hypothesise that it would be
possible to improve the predictive accuracy of the LCPN approach by using different
classification algorithms at different parent nodes of the class hierarchy. In order to
determine which classifier should be used at each node of the class hierarchy, during
the training phase, the training set is split into a sub-training and validation set with
examples being assigned randomly to each of those datasets. Different classifiers are
trained using that sub-training set and are then evaluated on the validation set. The
classifier chosen for each parent class node is the one with the highest classification
accuracy on the validation set. An improvement over the selective classifier approach
was proposed by Holden and Freitas (2008), where a swarm intelligence optimization
algorithm was used to perform the classifier selection. The motivation behind this
approach is that the original selective classifier approach uses a greedy, local search
method that has only a limited local view of the training data when selecting a clas-
sifier, while the swarm intelligence algorithm performs a global search that considers
the entire tree of classifiers (having a complete view of the training data) at once.
Another improvement over the selective classifier approach was proposed by Silla Jr
and Freitas (2009b), where both the best classifier and the best type of example repre-
sentation (out of a few types of representations, involving different kinds of predictor
attributes) are selected for each parent node classifier. In addition, Secker et al. (2010)
extended their previous classifier-selection approach in order to select both classifiers
and attributes at each classifier node.

So far we have discussed the LCPN approach in the context of a single label prob-
lem with a tree-structured class hierarchy. Let us now briefly discuss this approach
in the context of a multi-label problem. In this multi-label scenario, this approach
is not directly employable. There are, at least, two approaches that could be used to
cope with the multi-label scenario. One is to use a multi-label classifier at each parent
node, as done by Wu et al. (2005). The second approach is to take into account the
different confidence scores provided by each classifier and have some kind of deci-
sion thresholds based on those scores to allow multiple labels. One way of doing this
would be to adapt the multiplicative threshold proposed by Dumais and Chen (2000).
When dealing with a DAG-structured class hierarchy, this approach is also not directly
employable, as the created local training sets might be highly redundant (due to the
fact that a given class node can have multiple parents, which can be located at differ-
ent depths). To the best of our knowledge this approach has not yet been used with
DAG-structured class hierarchies.
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4.3 Local classifier per level approach

This is the type of “local” (broadly speaking) classifier approach least used so far on
the literature. The local classifier per level approach consists of training one multi-
class classifier for each level of the class hierarchy. Figure 6 illustrates this approach.
Considering the example of Fig. 6, three classifiers would be trained, one classifier for
each class level, where each classifier would be trained to predict one or more classes
(depending on whether the problem is single-label or multi-label) at its corresponding
class level. The creation of the training sets here is implemented in the same way as
in the local classifier per parent node approach.

This approach has been mentioned as a possible approach by Freitas and de Carvalho
(2007), but to the best of our knowledge its use has been limited as a baseline com-
parison method in Clare and King (2003) and Costa et al. (2007b).

One possible (although very naïve) way of classifying test examples using classifi-
ers trained by this approach is as follows. When a new test example is presented to the
classifier, get the output of all classifiers (one classifier per level) and use this informa-
tion as the final classification. The major drawback of this class-prediction approach
is being prone to class-membership inconsistency. By training different classifiers
for each level of the hierarchy it is possible to have outputs like class 2 at the first
level, class 1.2 at the second level, and class 2.2.1 at the third level, therefore gener-
ating inconsistency. Hence, if this approach is used, it should be complemented by a
post-processing method that tries to correct the prediction inconsistency.

To avoid this problem, one approach that can be used is the class-prediction top-
down approach. In this context, the classification of a new test example would be done
in a top-down fashion (similar to the standard top-down class-prediction approach),
restricting the possible classification output at a given level only to the child nodes
of the class node predicted in the previous level (in the same way as it is done in the
LCPN approach).

Fig. 6 Local classifier per level (circles represent classes and each dashed rectangle with round corners
encloses the classes predicted by a multi-class classifier)
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This approach could work with either a tree or a DAG class structure. Although
depth is normally a tree concept, it could still be computed in the context of a DAG,
but in the latter case this approach would be considerably more complex. This is
because, since there can be more than one path between two nodes in a DAG, a class
node can be considered as belonging to several class levels, and so there would be
considerable redundancy between classifiers at different levels. In the context of a
tree structured class hierarchy and multi-label problem, methods based on confidence
scores or posterior probabilities could be used to make more than one prediction per
class level.

4.4 Non-mandatory leaf node prediction and the blocking problem

In the previous sections, we discussed the different types of local classifiers but we
avoided the discussion of the non-mandatory leaf node prediction problem. The non-
mandatory leaf node prediction problem, as the name implies, allows the most specific
class predicted to any given instance to be a class at any node (i.e. internal or leaf node)
of the class hierarchy, and was introduced by Sun and Lim (2001). A simple way to
deal with the NMLNP problem is to use a threshold at each class node, and if the
confidence score or posterior probability of the classifier at a given class node—for
a given test example—is lower than this threshold, the classification stops for that
example. A method for automatically computing these thresholds was proposed by
Ceci and Malerba (2007).

The use of thresholds can lead to what Sun et al. (2004) called the blocking prob-
lem. As briefly mentioned in Sect. 4.1, blocking occurs when, during the top-down
process of classification of a test example, the classifier at a certain level in the class
hierarchy predicts that the example in question does not have the class associated with
that classifier. In this case the classification of the example will be “blocked”, i.e., the
example will not be passed to the descendants of that classifier. For instance, in Fig. 1
blocking could occur, say, at class node 2, which would mean that the example would
not be passed to the classifiers that are descendants of that node.

Three strategies to avoid blocking are discussed by Sun et al. (2004): threshold
reduction method, restricted voting method and extended multiplicative thresholds.
These strategies were originally proposed to work together with two binary classifiers
at each class node. The first classifier (which they call local classifier) determines if
an example belongs to the current class node, while the second classifier (which they
call sub-tree classifier) determines whether the example is going to be given to the
current node’s child-node classifiers or if the system should stop the classification of
that example at the current node.

These blocking reduction methods work as follows:

– Threshold reduction method: This method consists of lowering the thresholds of the
subtree classifiers. The idea behind this approach is that by reducing the thresholds
this will allow more examples to be passed to the classifiers at lower levels. The
challenge associated with this approach is how to determine the threshold value of
each subtree classifier. This method can be easily used with both tree-structured
and DAG-structured class hierarchies.
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– Restricted voting: This method consists of creating a set of secondary classifiers
that will link a node and its grandparent node. The motivation for this approach is
that, although the threshold reduction method is able to pass more examples to the
classifiers at the lower levels, it is still possible to have examples wrongly rejected
by the high-level subtree classifiers. Therefore, the restricted voting approach gives
the low-level classifiers a chance to access these examples before they are rejected.
This approach is motivated by ensemble-based approaches and the set of second-
ary classifiers are trained with a different training set than the original subtree
classifiers. This method was originally designed for tree-structured class hierar-
chies and extending it to DAG-structured hierarchies would make it considerably
more complex and more computationally expensive, as in a DAG-structured class
hierarchy each node might have multiple parent nodes.

– Extended multiplicative thresholds: This method is a straightforward extension of
the multiplicative threshold proposed by Dumais and Chen (2000) (explained in
Sect. 4.1), which originally only worked for a 2-level hierarchy. The extension
consists simply of establishing thresholds recursively for every two levels.

5 Global classifier (or big-bang) approach

Although the problem of hierarchical classification can be tackled by using the previ-
ously described local approaches, learning a single global model for all classes has the
advantage that the total size of the global classification model is typically considerably
smaller, by comparison with the total size of all the local models learned by any of the
local classifier approaches. In addition, dependencies between different classes with
respect to class membership (e.g. any example belonging to class 2.1 automatically
belongs to class 2) can be taken into account in a natural, straightforward way, and
may even be explicitated (Blockeel et al. 2002). This kind of approach is known as the
big-bang approach, also called “global” learning. Figure 7 illustrates this approach.

Fig. 7 Big-bang classification approach using a classification algorithm that learns a global classification
model about the whole class hierarchy
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In the global classifier approach, a single (relatively complex) classification model
is built from the training set, taking into account the class hierarchy as a whole during
a single run of the classification algorithm. When used during the test phase, each
test example is classified by the induced model, a process that can assign classes at
potentially every level of the hierarchy to the test example (Freitas and de Carvalho
2007).

Originally in the work of Sun and Lim (2001) the authors stated that there were
two approaches to hierarchical classification: top-down and big-bang. This statement
has been followed by several works in the field up to the writing of this paper (Costa
et al. 2007b; Secker et al. 2007; Alves et al. 2008; Xue et al. 2008). Based on the new
perspective about the top-down approach discussed earlier, this approach is essen-
tially a strategy for avoiding class-prediction inconsistencies across class levels during
the testing (rather than training) phase, when using a local hierarchical classification
method. However, we still lack a clear definition for the big-bang approach, as such
definition has not been made so far. Usually, by a mutual exclusion criterion, any
hierarchical classification method not considered top-down has been called big-bang.

Therefore, one of the contributions of this survey is clarifying what kinds of
approaches can be considered as global classifier approaches. Compared to the local
classifier approaches, much less research has been reported using the global classifier
approach. Although the latter approach has the advantage of learning, during the train-
ing phase, a global model for all the classes in a single step, it has an added complexity
to it.

Although there seems to be no specific core characteristic shared by all global
classifier approaches, in general global classifiers have two related broad characteris-
tics, as follows. They consider the entire class hierarchy at once (as mentioned earlier)
and they lack the kind of modularity for local training of the classifier that is a core
characteristic of the local classifier approach. We emphasize that the crucial distinction
between the global (big-bang) and local classifier approaches is in the training phase.
A global classifier can even use a top-down approach (typically used by local classifier
approaches) in its testing phase. In this latter case, as long as the classifier’s training
phase follows the two aforementioned broad characteristics of the global approach, it
should be classified as a global (rather than local) classifier.

From the current state of the art, the main kinds of approaches that are usually
considered to be global approaches are as follows. First, there is an approach based
on the Rocchio classifier (Rocchio 1971). This approach uses the idea of class clus-
ters, where new examples are assigned to the nearest class by computing the distance
between the new test example and each class.

One example of this approach is found in Labrou and Finin (1999). In this work
the system classifies web pages into a subset of the Yahoo! hierarchical categories.
This method is specific to text mining applications. During the testing phase each new
document has its similarity computed with respect to each document topic. The final
classification is given based on some threshold.

Another type of global classifiers is based on casting the hierarchical class problem
as a multi-label classification problem (Kiritchenko et al. 2005, 2006). In order to be
able to predict any class in the hierarchy, the training phase is modified to take into
account all the classes in the hierarchy, by augmenting the non-leaf nodes with the
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information of its ancestor classes. During the test phase, since the algorithm does not
take the hierarchy into account, it may suffer from the same limitations of the LCN,
that is, it is prone to class-prediction inconsistency. For this reason, in the approach
of Kiritchenko et al. (2005, 2006), the authors have a post-processing step, which
takes all the outputs into account in order to ensure that the hierarchical constrains are
respected.

Another type of global classifiers consists of modifying existing classifiers to
directly cope with the class hierarchy and benefit from this additional information.
Global classifiers of this type are heavily specific to the underlying flat classification
algorithm, as the original classification algorithms are modified in some way to take
into account the entire class hierarchy. This might represent a disadvantage when
compared to the local classifier approaches, which are not specific to a classification
algorithm and can be augmented in a number of different ways. However, to the user,
the output of a global classifier approach might be easier to understand/interpret than
the one from a local classifier approach, due to the typically much smaller size of the
classification model produced by the former approach, as mentioned earlier. This is
the case for instance in Vens et al. (2008), where the number of rules generated by
the global approach is much smaller than the number of rules generated by the local
approaches used in their experiments. Also, the global classifier approach does not
suffer from the major drawback of the local classifier approach, namely the fact that
a misclassification at a given class level is propagated to the lower levels of the class
hierarchy. Different modifications of the base flat classification algorithms have been
proposed by different authors, as follows.

In Wang et al. (2001) an association rule mining algorithm is heavily modified in
order to handle hierarchical document categorization. The main modification was to
make the algorithm work with a set of labels instead of a single label.

In Clare and King (2003) a modified version of the decision tree algorithm C4.5 to
handle the class hierarchy (HC4.5) was used. However, there are few details available
about how this algorithm is different from the standard C4.5. The only information the
authors provide is that they modified the entropy calculation formula to consider some
form of weighting. It seems that, other things being equal, deeper nodes are preferred
over shallower ones, because deeper nodes provide more specific class predictions to
users. In Silla Jr and Freitas (2009a) the authors have used the same principle to create
a global-model Naive Bayes classifier.

In Blockeel et al. (2002, 2006) and Vens et al. (2008) the authors present the
Clus-HMC algorithm, which is based on predictive cluster trees. The main idea of the
method is to build a set of classification trees to predict a set of classes, instead of only
one class. To do this, the authors transform the classification output into a vector with
boolean components corresponding to the possible classes. They also need to take
into account some sort of distance-based metric to calculate how similar or dissimilar
the training examples are in the classification tree. Originally the metric used was the
weighted Euclidian Distance. In the work of Aleksovski et al. (2009) the authors inves-
tigated the use of other distance measures, namely the Jaccard distance, the SimGIC
distance and the ImageClef distance. They concluded that there was no statistically
significant difference between the different distance metrics. Also, in Dimitrovski
et al. (2008) the authors have proposed the use of two ensembles approaches (bagging
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Table 2 Global classifier
approaches and their underlying
flat counterpart

Base algorithm Global approach

Ant-Miner Otero et al. (2009)

Association rule-based classifier Wang et al. (2001)

C4.5 Clare and King (2003)

Naive Bayes Silla Jr and Freitas (2009a)

Predictive clustering trees Blockeel et al. (2006) and
Vens et al. (2008)

Kernel machines Cai and Hofmann (2004, 2007),
Dekel et al. (2004a,b),
Rousu et al. (2005, 2006),
Seeger (2008), Qiu et al. (2009),
and Wang et al. (2009)

and random forests) applied to the Clus-HMC algorithm and concluded that the use
of ensembles improves the classification accuracy.

In Otero et al. (2009) the authors proposed the hAnt-Miner algorithm, a global-
model hierarchical Ant-Miner classification method (a type of swarm intelligence
method based on the paradigm of ant colony optimization) to cope with DAGs.

Table 2 lists the original flat classification algorithm and which authors have mod-
ified it in order to create global classification approaches.

6 A unifying framework for hierarchical classification

Based on our discussion so far, there are very many types of hierarchical classification
algorithms and a number of different types of hierarchical classification problems.
Hence, there is a clear need for a more precise way of describing (using a standardized
terminology as much as possible) which kind of hierarchical classification problem is
being solved, and what are the characteristics of the hierarchical classification algo-
rithm being used. For this reason, in this section we propose a unifying framework for
hierarchical classification problems and algorithms.

6.1 Categorization of the different types of hierarchical classification problems

In the proposed framework a hierarchical classification problem is described as a
3-tuple 〈ϒ,�,�〉, where:

– ϒ specifies the type of graph representing the hierarchical classes (nodes in the
graph) and their interrelationships (edges in the graph). The possible values for
this attribute are:

– T (tree), indicating that the classes to be predicted are arranged into a tree
structure;

– D (DAG), indicating that the classes to be predicted are arranged into a DAG
(Direct Acyclic Graph).
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– � indicates whether a data instance is allowed to have class labels associated with
a single or multiple paths in the class hierarchy. For instance, in the tree-structured
class hierarchy of Fig. 4, if there is a data instance whose most specific labels are,
say, both 2.1.1 and 2.2.1, that instance has multiple paths of labels (MPL). This
attribute can take on two values, as follows (the values’ names are self-explained):

– SPL—Single path of labels. This term is equivalent to the term “single label
per class level” which was used in the previous sections of this paper (to be
consistent with some works in the literature). In the proposed unifying frame-
work we prefer the new term because it can be naturally applied to both trees
and DAGs, whilst the definition of “class level” is not so clear in the case of
DAGs.

– MPL—Multiple paths of labels. This term is equivalent to the term “hierarchi-
cally multi-label” which was used in the previous sections.

– � describes the label depth of the data instances, as follows.

– The value FD (full depth labeling) indicates that all instances have a full depth
of labeling, i.e. every instance is labeled with classes at all levels, from the first
level to the leaf level.

– The value PD (partial depth labeling) indicates that at least one instance has a
partial depth of labeling, i.e. the value of the class label at some level (typically
the leaf level) is unknown. In practice it is often useful to know not only that
a dataset has at least one instance with a partial depth of labeling, but also
the precise proportion of instances with such partial depth of labeling. Hence,
in the problem-describing tuple of the proposed framework, the value of this
attribute can be specified in a more precise way as PD%, where % means the
percentage of the instances that have partial depth labeling.

6.2 Categorization of different types of hierarchical classification algorithms

A hierarchical classification algorithm is described as a 4-tuple 〈�,�,�,�〉, where:

– � indicates whether or not the algorithm can predict labels in just one or multiple
(more than one) different paths in the hierarchy. For instance, in the tree-structured
class hierarchy of Fig. 4, if the algorithm can predict both class 1.1 and 1.2 to a
given instance, which is equivalent to predicting the paths R-1-1.1 and R-1-1.2,
then the algorithm is capable of multiple label path prediction. This attribute can
take on two values, as follows:

– SPP (single path prediction) indicates that the algorithm can assign to each data
instance at most one path of predicted labels.

– MPP (multiple path prediction) indicates that the algorithm can potentially
assign to each data instance multiple paths of predicted labels.

Note that this attribute is conceptually similar to the aforementioned � attribute
used to describe hierarchical classification problems; but they refer to different
entities (algorithms vs. problems). If the target problem is a SPL (single path
of (true) labels) one, it would be more natural to use a SPP (single path predic-
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tion) algorithm, since a MPP (multiple path prediction) algorithm would have
“too much flexibility” for the target problem and could produce invalid classifica-
tions, wrongly assigning MPL to some instances. If the target problem is a MPL
(multiple paths of (true) labels) one, then one should use a MPP algorithm, since a
SPP algorithm would clearly have “too little flexibility” for the target problem, not
predicting true labels to some instances. In practice, however, in order to avoid the
complexities associated with MPP algorithms, some works simply transform an
original MPL problem into a simpler SPL problem, and then apply a SPP algorithm
to the simplified data set. This kind of transformation can be achieved by using,
for instance, variations of the methods for transforming flat multi-label problems
into flat single-label ones described by Tsoumakas and Katakis (2007), with proper
adaptations for the context of hierarchical classification. In any case, when such a
problem simplification is done, it should be clearly indicated in the work.

– � is the prediction depth of the algorithm. It can have two values:

– MLNP (mandatory leaf-node prediction) which means the algorithm always
assign leaf class(es).

– NMLNP (non-mandatory leaf-node prediction) which means the algorithm can
assign classes at any level (including leaf classes).
Again, there is a natural relationship between this � attribute for describing
algorithms and its counterpart � attribute for describing problems. If the target
problem is a FD (full depth labeling) one, one should of course use a MLNP
algorithm, since a NMLNP algorithm would have “too much flexibility” and
would “under-classify” some instances. If the target problem is a PD (Partial
Depth Labeling) one, one should of course use a NMLNP algorithm, since a
MLNP algorithm would have “too little flexibility” and would “over-classify”
some instances.

– � is the taxonomy structure the algorithm can handle. It has two values:

– T (tree), indicating that the classes to be predicted are arranged into a tree
structure;

– D (DAG), indicating that the classes to be predicted are arranged into a DAG
(Direct Acyclic Graph).

In principle an algorithm designed for coping with DAGs can be directly applied
(without modification) to trees. However, the converse is not true, i.e., if an algo-
rithm was designed for coping with tree-structured class hierarchies only, it would
have to be significantly extended to cope with DAGs, as discussed across earlier
sections of this paper.

– � is the categorization of the algorithm under the proposed taxonomy (Sect. 3)
and has the values:

– LCN (local classifier per node). Within this category, there is also another argu-
ment that needs to be specified, which is the strategy used for selecting negative
and positive examples. It can have the following values (most of them defined
previously in Sect. 4.1):

• E (Exclusive).
• LE (Less exclusive).
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• LI (Less inclusive).
• I (Inclusive).
• S (Siblings).
• ES (Exclusive siblings).
• D (Dynamic) for the cases where the positive and negative examples are

selected in a dynamic way [like in Fagni and Sebastiani (2007)], but in this
case the paper should clearly state how the examples are chosen.

– LCL (Local classifier per level).
– LCPN (Local classifier per parent node).
– GC (Global classifier).

Hence, researchers in hierarchical classification can use this unifying framework
to make precisely clear what are the main characteristics of the problem they are solv-
ing and also the main characteristics of the hierarchical classification algorithm being
used.

7 Conceptual and empirical comparison between different hierarchical
classification approaches

In the previous sections, we provided a critical review of the existing approaches
for the task of hierarchical classification. Therefore, it is interesting to compare the
existing approaches on an abstract level. Table 3 provides a summary of the different
approaches, considering their advantages and disadvantages. In that table, the three
rows referring to the three types of local classifiers consider only the training phase of
those local approaches. The next row considers the testing phase of any of those three
types of local classifiers using the top-down approach. For each row in the table, the
description of advantages and disadvantages is self-explanatory.

Also, it is interesting to verify what kinds of approaches have been investigated
and what kinds of class structure (tree or DAG) have been used so far in the literature.
Table 4 classifies the works reviewed in this paper according to the new proposed
taxonomy. The analysis of Table 4 shows that the majority of the research carried out
so far deals with tree-structured classification problems, rather than DAG-structured
ones. Also, the number of papers found in the literature using local classifiers is more
than twice the number of papers using global classifiers. This is expected as devel-
oping new global classifiers is more complicated than using local approaches with
well-known classifiers.

Considering the issues of single/multiple path predictions and prediction depth, a
more detailed analysis is carried out in Table 5. Note, however, that this table contains
only the papers in the literature which provide clear information about these two issues.
Therefore, Table 5 refers to fewer papers than Table 4, although the papers which are
mentioned in the former are reported in more detail, according to the standardized
terminology of the proposed unified framework. It should be noted that a significant
number of papers that are mentioned in Table 4 are not mentioned in Table 5 because
those papers did not provide clear information about some characteristics of the cor-
responding hierarchial classification problem or algorithm. This reinforces the need
for the hierarchical classification community in general to be clearer on which kind
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Table 3 Summary of characteristics of different approaches, at a high level of abstraction

Hierarchical approach Advantages Disadvantages

Flat classifier Simplicity; Completely ignores the class
hierarchy;

LCN (training phase) Simplicity;
Naturally multi-label;

May suffer from the blocking
problem;

Prone to inconsistency;

Employs a greater number of classifiers;

LCPN (training phase) Simplicity;
Employs fewer classifiers than

LCN;

May suffer from the blocking
problem;

Prone to inconsistency;

LCL (training phase) Simplicity; Prone to inconsistency;
Employs a small number of

classifiers;
A classifier might have to

discriminate among a large number
of classes (at deep levels);

Ignores parent–child class
relationships during training;

(Any) Local classifier with
the top-down class
prediction approach

Preserves natural constrains
in class membership;

May suffer from the blocking
problem;

Considers the class hierarchy
during testing and during
the creation of the training
sets;

Depending on the problem at hand, can
create a very complex set of cascade of
classifiers, which in turn leads to a
complex classification model;

Generality (can be used with
any base classifier);

Misclassification at a given class
node is propagated downwards to
all its descendant classes;

Global classifier Preserves natural constrains
in class membership;

Classifier-specific;

Considers the class hierarchy
during training and testing;

Single (although complex)
decision model;

of problem and what type of algorithms they are using, and the proposed unifying
framework offers a standardized terminology and a taxonomy for this purpose.

Although the great majority of research has been carried out on local classifiers,
one question that naturally arises is whether a particular type of approach is better than
the others or not. In order to investigate that, a compilation of the existing literature
(based on the conclusions of the authors of each paper) is shown in Table 6, where the
symbols ↑,↓,∼ represent whether each approach (corresponding to a given row in
the table) obtained a better (↑), worse (↓) or similar (∼) predictive performance than
the approach shown in the corresponding column. The names of the approaches in the
rows and columns of this table are abbreviated as follows: LCN is the local classifier
per node, LCPN is the Local Classifier per Parent Node and LCL is the Local Classi-
fier per Level. It should be noted that when a particular approach is compared against
itself, e.g. LCPN against LPCN, this represents the case where the authors propose a
new method within the same broad approach and use the standard approach of that
type as a baseline. Also, the lack of any comparisons in a given table cell should not

123



A survey of hierarchical classification 55

Table 4 Categorization of hierarchical classification methods proposed in the literature according to the
taxonomy proposed in this paper

Approach (�) Class List of works
structure
(�)

Flat classifier Tree Barbedo and Lopes (2007)

DAG Hayete and Bienkowska (2005)

LCN Tree D’Alessio et al. (2000), Dumais and Chen (2000),
Sun and Lim (2001),
Mladenic and Grobelnik (2003),
Sun et al. (2003, 2004), Liu et al. (2005),
Wu et al. (2005), Cesa-Bianchi et al. (2006a,b),
Cesa-Bianchi and Valentini (2009),
Esuli et al. (2008),
Punera and Ghosh (2008), Xue et al. (2008),
Bennett and Nguyen (2009), Binder et al. (2009),
Valentini (2009) and Valentini and Re (2009)

DAG Barutcuoglu and DeCoro (2006),
Barutcuoglu et al. (2006), DeCoro et al. (2007),
Guan et al. (2008) and Jin et al. (2008)

LCPN Tree Koller and Sahami (1997), Chakrabarti et al. (1998),
McCallum et al. (1998), Weigend et al. (1999),
D’Alessio et al. (2000), Ruiz and Srinivasan (2002),
Burred and Lerch (2003), Tikk and Biró (2003),
Tikk et al. (2003), McKay and Fujinaga (2004),
Li and Ogihara (2005), Brecheisen et al. (2006a),
Tikk et al. (2007),
Holden and Freitas (2005, 2006, 2008, 2009),
Xiao et al. (2007), Secker et al. (2007, 2010),
Costa et al. (2008), Silla Jr and Freitas (2009b)
and Gauch et al. (2009)

DAG Kriegel et al. (2004)

LCL Tree Clare and King (2003)

DAG

Global classifier Tree Labrou and Finin (1999), Wang et al. (1999, 2001),
Clare and King (2003), Blockeel et al. (2006),
Cai and Hofmann (2004, 2007),
Dekel et al. (2004a,b),
Peng and Choi (2005), Rousu et al. (2005, 2006),
Astikainen et al. (2008), Seeger (2008),
Silla Jr and Freitas (2009a) and Qiu et al. (2009)

DAG Kiritchenko et al. (2005, 2006),
Alves et al. (2008), Dimitrovski et al. (2008),
Vens et al. (2008), Aleksovski et al. (2009),
Otero et al. (2009), Wang et al. (2009)

be interpreted as no comparisons were done in the corresponding cell. Sometimes this
is the case, while in others the authors compare only different variations of their own
approach (e.g. parameter tuning) and not to other approaches.

A careful analysis of the data compiled in Table 6 shows that, taking into account
the works that compare their hierarchical approaches against flat classification,
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Table 5 A more detailed categorization of some hierarchical classification works, according to the fol-
lowing attributes of the proposed unifying framework: approach (�), class structure (�), label cardinality
prediction (�) and prediction depth (�)

〈�,�, �,�〉 List of works

〈LCN, T, SPP, NMLNP〉 Punera and Ghosh (2008) and Binder et al. (2009)

〈LCN, T, MPP, NMLNP〉 Dumais and Chen (2000), Cesa-Bianchi et al. (2006a,b),
Cesa-Bianchi and Valentini (2009), Bennett and Nguyen (2009),
Valentini (2009) and Valentini and Re (2009)

〈LCN, D, MPP, NMLNP〉 Barutcuoglu and DeCoro (2006), Barutcuoglu et al. (2006),
DeCoro et al. (2007), Guan et al. (2008)
and Jin et al. (2008)

〈LCPN, T, SPP, MLNP〉 Koller and Sahami (1997), Chakrabarti et al. (1998),
Weigend et al. (1999), Ruiz and Srinivasan (2002),
Burred and Lerch (2003), Tikk and Biró (2003),
McKay and Fujinaga (2004), Li and Ogihara (2005),
Holden and Freitas (2005, 2006, 2008, 2009),
Xiao et al. (2007), Secker et al. (2007, 2010),
Costa et al. (2008), Silla Jr and Freitas (2009b)
and Gauch et al. (2009)

〈LCPN, T, SPP, NMLNP〉 Tikk et al. (2007)

〈GC, T, SPP, MLNP〉 Qiu et al. (2009)

〈GC, T, SPP, NMLNP〉 Labrou and Finin (1999) and Silla Jr and Freitas (2009a)

〈GC, T, MPP, NMLNP〉 Clare and King (2003), Blockeel et al. (2006),
Rousu et al. (2005, 2006), Dimitrovski et al. (2008)
and Aleksovski et al. (2009)

〈GC, D, SPP, NMLNP〉 Otero et al. (2009)

〈GC, D, MPP, NMLNP〉 Alves et al. (2008) and Vens et al. (2008)

the hierarchical approaches are usually better than the flat classification approach.
However, it is less clear if the global approach is better or worse to deal with hierar-
chical classification problems than the local approach.

Two studies that tried to answer that question were Costa et al. (2007b) and Ceci and
Malerba (2007). In Costa et al. (2007b) an evaluation comparing: the flat classification
approach, the local classifier per level approach, the local classifier per parent node
approach and a global approach [using HC4.5 (Clare 2004)] was performed using
two biological datasets with the same base classifier (C4.5). In those experiments, the
local classifier per parent node with the top-down class prediction approach performed
better on the first dataset while the global approach performed better on the second
dataset.

In Ceci and Malerba (2007) the authors investigated the use of flat classifiers against
the hierarchical local classifier per parent node approach using the same base classi-
fier: SVM or Naive Bayes depending on the experiment. In their experiments, using
accuracy as the evaluation measure, the flat SVM obtained better results than its hier-
archical counterpart. In a deeper analysis of the misclassified instances, the authors
used a combination of four measures into one. The idea behind the use of different
measures was to verify different types of errors in a hierarchical classification sce-
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Table 6 An analysis of how the hierarchical classification methods proposed in the literature performed
when compared to other approaches

Approach Work Result when compared against

Flat LCN LCPN LCL GC

LCN Brecheisen et al. (2006a) ∼
D’Alessio et al. (2000) ↑
Liu et al. (2005) ↑
Cesa-Bianchi et al. (2006a,b) ↑ ↑
Cesa-Bianchi and Valentini (2009) ↑
DeCoro et al. (2007) ↑
Guan et al. (2008) ↑
Valentini (2009) ↑ ↑
Valentini and Re (2009) ↑ ↑
Sun et al. (2004) ↑
Barutcuoglu and DeCoro (2006) ↑
Punera and Ghosh (2008) ↑
Bennett and Nguyen (2009) ↑
DeCoro et al. (2007) ↑

LCPN Koller and Sahami (1997) ∼
Burred and Lerch (2003) ∼
Chakrabarti et al. (1998) ↑
McCallum et al. (1998) ↑
Dumais and Chen (2000) ↑
Ruiz and Srinivasan (2002) ↑ ∼
Kriegel et al. (2004) ↑
McKay and Fujinaga (2004) ↑
Li and Ogihara (2005) ↑
Xiao et al. (2007) ↑
Jin et al. (2008) ↑
Gauch et al. (2009) ↑
Secker et al. (2007) ↑
Costa et al. (2008) ↑
Holden and Freitas (2008) ↑

LCL Clare and King (2003) ∼
GC Dekel et al. (2004a,b) ↑ ↑

Wang et al. (2001) ↑
Peng and Choi (2005) ↑
Rousu et al. (2005, 2006) ↑
Blockeel et al. (2006) ↑
Cai and Hofmann (2004, 2007) ↑
Wang et al. (1999) ↑
Kiritchenko et al. (2005, 2006) ↑ ∼
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Table 6 continued

Approach Work Result when compared against

Flat LCN LCPN LCL GC

Astikainen et al. (2008) ↑
Wang et al. (2009) ↑
Vens et al. (2008) ↑
Otero et al. (2009) ↑
Silla Jr and Freitas (2009a) ↑
Clare and King (2003) ∼
Aleksovski et al. (2009) ∼
Blockeel et al. (2006) ↑
Dimitrovski et al. (2008) ↑
Qiu et al. (2009) ↑

nario (e.g. sibling classification error; predicting only higher-level classes (and not the
most specific class) for a given example, etc.). After this deeper analysis of the mis-
classification errors, the authors noticed that although the flat SVM is more accurate,
it commits more serious errors than its hierarchical counterpart. Therefore, it seems
that whether one particular approach is better than another remains an open question.
Hence, the issue of whether one particular approach is better than another naturally
depends on the evaluation measure used.

Regardless of which approach is better, the analysis of Ceci and Malerba (2007)
raises an important concern: How to evaluate hierarchical classification algorithms?
Since the use of flat classification measures might not be enough to give us enough
insight at which algorithm is really better. Before trying to answer this question, we
analysed how the evaluation was carried out in the surveyed papers. The analysis shows
that most researchers used standard flat classification evaluation measures, while rec-
ognizing that they are not ideal, because the errors at different levels of the class
hierarchy should not be penalized in the same way. Other authors propose their own
hierarchical classification evaluation measures, which are often only used by the ones
who propose it, and in some cases there is not a clear definition of the evaluation
measure being suggested. There are also cases when researchers use more than one
existing evaluation measure and also propose their own! A good review of hierarchical
classification evaluation measures is found in Sun et al. (2003), although it is out of date
now. A more recent survey on evaluation measures for hierarchical classification was
presented by Costa et al. (2007a), however it was limited to tree-structured problems
with single path of labels. An evaluation measure that can cope with multiple paths
of labels in tree-structured problems was proposed by Cesa-Bianchi et al. (2006b),
called h-loss (for hierarchical loss) as opposed to the traditional zero-one loss. The
h-loss however cannot cope with DAGs.

There seems to be no studies that empirically compare the use of the different hier-
archical classification evaluation measures, in different application domains (which
is important as they have very different class structures), against the flat classifica-
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tion accuracy measure. This would be particularly interesting because most of the
approaches currently use flat classification evaluation measures. When comparing
a hierarchical classification approach against a flat classification approach authors
usually report small gains in accuracy, while when using the hierarchical evaluation
measures proposed in Kiritchenko et al. (2006) the difference in predictive accuracy
over the flat approach in the worst case was of 29.39%. This poses an interesting ques-
tion, if hierarchical approaches overall show similar or better results against the flat
classification approach when using flat classification evaluation measures, couldn’t
the results be actually much better if a hierarchical classification evaluation measure
was used instead?

This question naturally leads to the question of which hierarchical classification
measure to use? Based on our experience, we suggest the use of the metrics of hier-
archical precision (hP), hierarchical recall (hR) and hierarchical f-measure (hF) pro-

posed by Kiritchenko et al. (2005). They are defined as follows: hP =
∑

i |P̂i ∩T̂i |
∑

i |P̂i | ,

hR =
∑

i |P̂i ∩T̂i |
∑

i |T̂i | , hF = 2∗hP∗hR
hP+hR , where P̂i is the set consisting of the most specific

class(es) predicted for test example i and all its(their) ancestor classes and T̂i is the set
consisting of the true most specific class(es) of test example i and all its(their) ances-
tor classes. The summations are of course computed over all test examples. Note that
these measures are extended versions of the well known metrics of precision, recall
and f-measure but tailored to the hierarchical classification scenario. To determine if
there is statistically significant difference between different algorithms, the interested
reader is referred to García and Herrera (2008).

Although no hierarchical classification measure can be considered the best one in
all possible hierarchical classification scenarios and applications, the main reason for
recommending the hP, hR and hF measures is that, broadly speaking, they can be effec-
tively applied (with a caveat to be discussed later) to any hierarchical classification
scenario; i.e., tree-structured, DAG-structured, SPL, MPL, MLNP or NMLNP prob-
lems. Let us elaborate on these points, in the context of the categorization of different
types of hierarchical classification problems and algorithms proposed in the previous
section.

First, the hP, hR and hF measures can be applied not only to tree-structured classes,
but also to DAG-structured classes. In the latter case, although in a DAG a node can
have multiple paths, one can still compute the set of all ancestors of a node (possibly
involving multiple paths from the node to the root) without any ambiguity, and this set
of ancestors is basically what is needed to compute these hierarchical classification
measures. Secondly, these measures can be applied not only to SPL problems, but
also to MPL problems, since one can also compute the set of all ancestors of multiple
nodes without any ambiguity. Thirdly, the hP, hR and hF measures can also be naturally
applied to full depth labeling problems, associated with MLNP algorithms.

The fourth case to be considered here, and the most interesting and complex one, is
the case of partial depth labeling problems associated with NMLNP algorithms. This is
a scenario where the application of these measures faces some problems, in particular
due to a relationship between the concepts of hierarchical precision and hierarchical
recall and the concepts of generalization and specialization errors presented in Ceci
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and Malerba (2007). In the latter work, a generalization error refers to the case where
the most specific class predicted for an example is more generic than the true most
specific known class associated with the example; e.g., predicting only class R.1 for
an example whose most specific known class is R.1.1. A specialization error refers to
the case where the most specific class predicted for an example is more specific than
the true most specific known class associated with the example; e.g. predicting class
R.1.1 for an example whose most specific known class is R.1.

To illustrate some issues associated with the hP, hR and hF measures in the context
of generalization and specialization errors, let us consider some hypothetical examples.
Consider the following three cases of generalization errors:

– (A) Predicted classes: “R.1”, True Known Classes: “R.1.2”
– (B) Predicted classes: “R.1”, True Known Classes: “R.1.2.1”
– (C) Predicted classes: “R.1”, True Known Classes: “R.1.2.1.1”

In these cases the values of hP and hR will be, respectively:

– (A) hP = 1/1; hR = 1/2
– (B) hP = 1/1; hR = 1/3
– (C) hP = 1/1; hR = 1/4

Hence, one can see that for a fixed predicted class, the larger the generalization
error (corresponding to a deeper true known class), the lower the hR value, whilst the
hP value remains constant. Now let us consider the following cases of specialization
errors:

– (D) Predicted classes: “R.2.2”, True known class: “R.2”
– (E) Predicted classes: “R.2.2.1”, True known class: “R.2”
– (F) Predicted classes: “R.2.2.1.3”, True known class: “R.2”

In these cases the values of hP and hR will be, respectively:

– (D) hP = 1/2; hR = 1/1
– (E) hP = 1/3; hR = 1/1
– (F) hP = 1/4; hR = 1/1

Hence, one case see that for a fixed true known class, the larger the specialization
error (corresponding to a deeper predicted class), the lower the hP value, whilst the
hR value remains constant. In summary, the hF measure, which aggregates hP and hR
into a single formula, seems to be able to effectively penalize both generalization and
specialization errors, at first glance.

However, there is a problem associated with the use of the hP measure in the context
of the so-called “specialization error”, as follows. Suppose that the most specific true
known class for an example is R.1, and the algorithm predicts to that example the
class R.1.1, leading to a hP value of 1/2. Is this penalization fair? Can we be sure that
this kind of over-specialized prediction is really an error? This seems to depend on
the application. In some applications perhaps we could consider this penalization fair,
and consider this over-specialization as an error, if we interpret the most specific true
known class as representing the absolute truth about the classes associated with the
example. In practice, however, in many applications this interpretation seems unfair,
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because the most specific true known class associated with an example represents, as
emphasized by the use of the keyword “known”, just our current state of knowledge,
which includes current uncertainties about deeper classes that might be solved later,
as more knowledge about the example’s classes becomes available.

To consider a concrete example, a major application of hierarchical classification
is in the prediction of protein functions where classes are terms in the Gene Ontology,
which is briefly reviewed in the next Section. In this application, many proteins are
currently annotated with very generic classes only. However, this does not mean the
protein really does not have more specific classes, it just means the more specific clas-
ses of the protein are not known at present, but might very well be discovered later by
biologists. In this kind of application, if the most specific known class of an example
is R.1, if the algorithm predicts for that example class R.1.1, the only thing we can
really say for sure is that the prediction was correct at the first level, we simply do
not know if the prediction was correct or not at the second level, since the true class
of the example at the second level is unknown. Therefore, in this kind of application
there is an argument to modify the definition of hP in such a way that over-specialized
predictions are not considered as errors and so are not penalized.

Despite the above problem, overall the measures of hP, hR and hF seem effective
measures of hierarchical classification across a broad range of scenarios, as discussed
above, which justifies their recommendation. In Sokolova and Lapalme (2009) the
authors also consider these measures to be adequate as they do not depend on subjective
and user-specific parameters like the distance-based or semantics-based measures. It
should also be noted that, in contrast to the hP, hR and hF measures, some other
measures of hierarchical classification face some problems in their computation when
applied to DAG-structured and/or MPL problems. For instance, although a distance-
based measure can naturally be applied to a tree-structured class hierarchy, the concept
of the distance between two nodes faces some ambiguity in a DAG, where there can be
multiple paths between two nodes. In that case, it is not clear if the distance between
two nodes should be given by the shortest, longest or average distance among all paths
connecting those two nodes.

8 Major applications of hierarchical classification

8.1 Text categorization

The use of hierarchical classification in the field of text categorization dates back to
at least 1997, when Koller and Sahami (1997) proposed the use of a local classifier
per parent node for training coupled with the top-down class-prediction method for
testing. There are different types of motivation to work with hierarchical classification
in this field. The first one is due to the large growing of the number of electronic doc-
uments, and a natural way to handle them is to organize them into hierarchies. Indeed,
virtually any type of electronic document can be organized into a taxonomy, e.g. web-
pages, digital libraries, patents, e-mails, etc. For instance, in Chakrabarti et al. (1998)
the authors propose an interesting example showing how the use of hierarchies can
improve the use of information retrieval systems. The example they use is to search for

123



62 C. N. Silla Jr., A. A. Freitas

Fig. 8 A small part of one of the two taxonomies used in Chakrabarti et al. (1998) that represents a portion
of the US patent database taxonomy

the keywords jaguar (and other related words to the animal) on web-search websites.
They note that for the user it would be very difficult to retrieve the information he/she
was seeking, as a huge amount of information about the car was returned. However,
if the user could limit his/her search within a hierarchy (e.g. search for jaguar in the
part of the hierarchy rooted at animals), that would help to disambiguate polysemous
terms. Figure 8 illustrates one example of a document-related class hierarchy.

8.2 Protein function prediction

In bioinformatics, particularly in the task of protein function prediction, the classes to
be predicted (protein functions) are naturally organized into class hierarchies. Exam-
ples of these hierarchies are the Enzyme Commission (Barret 1997) and the Gene
Ontology (Ashburner et al. 2000). The Enzyme Commission class hierarchy is—as
suggested by its name—specific to enzymes (proteins that speed up chemical reac-
tions), but the Gene Ontology class hierarchy is extremely generic, and can be applied
to potentially any type of protein. Protein function prediction is important because this
type of information can be potentially used to develop drugs and for better diagnosis
and treatment of diseases, since many diseases are caused by or related to malfunction-
ing of proteins. Figure 9 illustrates a very small part of the Gene Ontology hierarchy.
It is important to note that other hierarchical classification schemes exist to annotate
proteins, e.g. the MIPS FunCat (Ruepp et al. 2004). These different hierarchies have
been used by different authors (Clare and King 2003; Kriegel et al. 2004; Wu et al.
2005; Barutcuoglu et al. 2006; Blockeel et al. 2006; Rousu et al. 2006; Alves et al.
2008; Guan et al. 2008; Costa et al. 2008; Vens et al. 2008; Otero et al. 2009).

Fig. 9 Illustration of the top level structure of the immune system processes in the Gene Ontology (Ash-
burner et al. 2000)
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Fig. 10 The audio class hierarchy Used in Burred and Lerch (2003)

8.3 Music genre classification

In organizing and retrieving music information, the genre plays an important con-
cept, as there are studies that show that genre is one of the most used concepts to
search for music in music information systems (Downie and Cunningham 2002; Lee
and Downie 2004). As with other applications, having the genres organized into a
class hierarchy helps users to browse and retrieve this information. So far most of the
work in this area is only concerned with music genres as a flat classification problem,
although many researchers acknowledge the possibility of using class hierarchies in
their future works. Some of the works that have used class hierarchies in this applica-
tion domain are: (Burred and Lerch 2003; McKay and Fujinaga 2004; Li and Ogihara
2005; Brecheisen et al. 2006a; Barbedo and Lopes 2007; DeCoro et al. 2007; Silla Jr
and Freitas 2009b). The idea of using the hierarchy for browsing and retrieval has been
explored so far in two existing tools for organizing music collections: Zhang (2003)
demonstrates an end-user system based on the use of hierarchies to organize music
collections; and Brecheisen et al. (2006b) allows the system to have user feed-back
in order to re-organize the pre-existing class hierarchy as the users see fit. Figure 10
illustrates the audio class hierarchy used in Burred and Lerch (2003).

8.4 Other applications

Although the existing literature has used hierarchical classification methods to deal
with the types of applications described in the previous sections, of course the use of
those methods is not limited to those applications. In this section, we briefly review
some projects that use hierarchical classification approaches to deal with different
types of applications.

In Dekel et al. (2004b) the authors use a large margin classifier in the task of hierar-
chical phoneme classification. This task consists of classifying the phonetic identity of
a (typically short) speech utterance (Dekel et al. 2004b). In this context the class hier-
archy plays the role of making the misclassifications less severe. Figure 11 illustrates
the phonetic hierarchy for American English.

In Barutcuoglu and DeCoro (2006) the authors use their Bayesian Network aggre-
gation with k-NN base classifiers in the task of 3D shape classification. The motivation
to use hierarchical approaches to this problem is that in 3D shape classification sce-
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Fig. 11 The phonetic tree of American English (Dekel et al. 2004b)

Fig. 12 The animal branch of the Princeton Shape Database (Shilane et al. 2004) used by Barutcuoglu and
DeCoro (2006)

narios classes are arranged in a hierarchy from most general to most specific shapes.
Moreover, a common problem in shape analysis involves assigning semantic meaning
to geometry by using a pre-existing class hierarchy. In their experiments they used the
Princeton Shape Benchmark (Shilane et al. 2004), which has a 4 level depth hierarchy
and 198 leaf classes. Figure 12 illustrates the sub-tree Animals of the hierarchy. Other
works that deal with hierarchical image classification are (Dimitrovski et al. 2008)
and (Binder et al. 2009).

In Xiao et al. (2007) the authors build a class hierarchy for the task of hierarchical
classification of emotional speech. The database used in this paper is Berlin emotional
speech database (Burkhardt et al. 2005). They create a 3 level depth hierarchy to dis-
tinguish between 6 leaf classes (which are types of emotion): anger, boredom, fear,
gladness, sadness and neutral. They use a LCPN approach with a Multi Layer Per-
ceptron (MLP) Neural Network with sequential forward feature selection. Figure 13
illustrates their class hierarchy.

A summary of the literature cited above according to their application domain and
type of hierarchical classification approach used is presented in Table 7.

9 Concluding remarks

In this paper we surveyed the literature on hierarchical classification problems and
methods, which is scattered across different application domains. Based on the exist-
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Fig. 13 The hierarchy used for mood classification based on speech in the Berlin Dataset (Burkhardt et al.
2005) used by Xiao et al. (2007)

ing literature we proposed a new unifying framework for hierarchical classification,
including a taxonomy of hierarchical classification methods, in order to clarify the sim-
ilarities and differences between a number of these types of problems and methods.
The new proposed unifying framework can be used by the hierarchical classifica-
tion community to clearly describe the characteristics of their proposed methods and
the problems they are working on, and to facilitate the comparison of their proposed
methods with other methods proposed in the literature.

One of the main contributions of the proposed taxonomy is to identify the “top-
down” approach as an approach concerning mainly the testing phase of a classification
algorithm, being therefore an approach to a large extent independent of the particular
local approach used for training. By contrast, in the literature the term “top-down”
approach is used to refer to both the testing and training phases, and without distin-
guishing the type of local classifier approach used in the training phase of the system.
We also performed an analysis of the advantages and disadvantages of each type of
method identified in the new taxonomy.

We also investigated what kind of class structures are most often used (tree or
DAG) as well as how to evaluate the different hierarchical classification systems. We
have observed that most of the research so far has been concerned with tree-structured
class hierarchies, probably due to the fact that trees are considerably simpler struc-
tures than DAGs. However, some DAG-structured class hierarchies are very useful—a
major example is the Gene Ontology, which has become very important in biology.
Hence, there is a clear need for more research on hierarchical classification methods
for DAG-structured class hierarchies.

We also analyzed the results reported in a number of works in order to verify if
there is a type of hierarchical classification approach which is better than others, and
it seems that any hierarchical classification approach (local or global) is overall better
than the flat classification approach, when solving a hierarchical classification prob-
lem. Only in rare cases the authors obtained similar results for hierarchical and flat
classification approaches, but in these cases they have used a flat classification eval-
uation measure, which does not take the different types of hierarchical classification
errors into account.
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Table 7 Summary of the existing literature on hierarchical classification according to the type of application
domain and the type of hierarchical classification approach

Type of application Hierarchical
classification
approach (�)

List of works

Text
categorization

LCN D’Alessio et al. (2000), Sun and Lim (2001),
Mladenic and Grobelnik (2003), Sun et al. (2003, 2004),
Wu et al. (2005), Cesa-Bianchi et al. (2006a,b),
Esuli et al. (2008), Jin et al. (2008),
Punera and Ghosh (2008), Xue et al. (2008)
and Bennett and Nguyen (2009)

LCPN Koller and Sahami (1997), Chakrabarti et al. (1998),
McCallum et al. (1998), Weigend et al. (1999),
D’Alessio et al. (2000), Dumais and Chen (2000),
Ruiz and Srinivasan (2002), Tikk and Biró (2003),
Tikk et al. (2003, 2007), Kriegel et al. (2004)
and Gauch et al. (2009)

GC Labrou and Finin (1999), Wang et al. (1999, 2001),
Dekel et al. (2004a), Cai and Hofmann (2004, 2007),
Rousu et al. (2005, 2006),
Kiritchenko et al. (2005, 2006),
Peng and Choi (2005), Seeger (2008)
and Qiu et al. (2009)

Protein function
prediction

LCN Wu et al. (2005), Barutcuoglu et al. (2006),
Guan et al. (2008), Valentini (2009),
Valentini and Re (2009) and
Cesa-Bianchi and Valentini (2009)

LCPN Holden and Freitas (2005, 2006, 2008, 2009),
Secker et al. (2007, 2010), Costa et al. (2008)
and Kriegel et al. (2004)

LCL Clare and King (2003)

GC Clare and King (2003), Blockeel et al. (2006),
Alves et al. (2008), Rousu et al. (2006),
Vens et al. (2008), Astikainen et al. (2008),
Otero et al. (2009), Silla Jr and Freitas (2009a),
Aleksovski et al. (2009) and Wang et al. (2009)

Music genre
classification

LCN DeCoro et al. (2007)
LCPN Burred and Lerch (2003), McKay and Fujinaga (2004),

Li and Ogihara (2005), Brecheisen et al. (2006a)
and Silla Jr and Freitas (2009b)

Image
classification

LCN Barutcuoglu and DeCoro (2006) and Binder et al. (2009)
GC Dimitrovski et al. (2008)

Emotional speech
classification

LCPN Xiao et al. (2007)

Phoneme
classification

GC Dekel et al. (2004a,b)

Finally, we also briefly reviewed several types of applications of hierarchical clas-
sification methods, ranging from text categorization to bioinformatics to music genre
classification and other application domains. We hope that this review of applications
will stimulate further research on the important topic of hierarchical classification.
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Concerning future research directions, in addition to the aforementioned need for
more research involving DAG-structured class hierarchies, there is also a need for
larger-scale comparisons of different hierarchical classification methods. Fortunately,
a set of datasets for large-scale hierarchical classification in bioinformatics has been
recently made freely available at http://www.cs.kuleuven.be/~dtai/clus/hmcdatasets/,
which provides the hierarchical classification community with a useful set of bench-
marking datasets.

Also, how to efficiently perform feature selection in hierarchical classification
remains a topic deserving more attention. One issue that most authors agree on is
that, intuitively, different features are better at discriminating between classes at dif-
ferent levels of the class hierarchy (Koller and Sahami 1997; Mladenic and Grobelnik
2003; Ceci and Malerba 2007; Esuli et al. 2008; Secker et al. 2010). In Esuli et al.
(2008) the authors mention that both feature selection and the selection of negative
training examples should be performed “locally”, paying attention to the topology
of the classification scheme. For global classification approaches, however, how to
perform feature selection remains an open question.

Other research directions include the use of relational learning, semi-supervised
learning (Ceci 2008) and other more sophisticated types of machine learning in hier-
archical classification scenarios.
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