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Abstract Subspace clustering finds sets of objects that are homogeneous in sub-
spaces of high-dimensional datasets, and has been successfully applied in many
domains. In recent years, a new breed of subspace clustering algorithms, which we
denote as enhanced subspace clustering algorithms, have been proposed to (1) handle
the increasing abundance and complexity of data and to (2) improve the clustering
results. In this survey, we present these enhanced approaches to subspace clustering
by discussing the problems they are solving, their cluster definitions and algorithms.
Besides enhanced subspace clustering, we also present the basic subspace clustering
and the related works in high-dimensional clustering.
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1 Introduction

Clustering finds groups of similar objects, and due to its usefulness, it has been suc-
cessfully applied in many domains such as biology, finance, marketing, etc. Details
of its applications can be found in (Jain et al. 1999; Kriegel et al. 2009). Traditional
clustering accounts the full data space to partition objects based on their similarity.
Recently, advances in data collection and management have led to large amount of
data being collected, particularly dataset with a large number of attributes. Traditional
clustering, although it is a rather mature research field, is not always appropriate to
handle data sets with a larger number of attributes.

In high dimensional data, several problems occur, attributed to the so called curse
of dimensionality. Interesting characteristics of this curse are discussed e.g. in (Beyer
et al. 1999; Bennett et al. 1999; Francois et al. 2007; Houle et al. 2010). With respect
to clustering, we can summarize the curse of dimensionality as a twofold problem
(Kriegel et al. 2009)

First, several attributes may not be relevant to define a certain cluster properly and
may, thus, distort the distance computations usually performed in full-dimensional
space to discern similar from dissimilar points. The cluster may be present in some
subset of the attributes (i.e., some subspace), but it may not be possible to identify the
cluster properly in the full dimensional space.

Second, the subset of attributes relevant to some cluster (i.e., the subspace where
this cluster is discernible) may be different from the subset of attributes relevant for a
second cluster, both may differ from the relevant subspace for a third cluster. As a con-
sequence, there may be no global feature reduction procedure able to identify a com-
mon subspace to derive all clusters in the data set. This second observation leads to an
important property of clusters in high dimensional data. It may be meaningful to define
clusters in an overlapping way, i.e., one data point can belong to cluster C1 in a certain
subspace but to cluster C2 in another subspace. This is a possibility that is not accounted
for by traditional clustering methods such as density based or partitioning approaches.

Subspace clustering has been proposed to overcome these two problems traditional
clustering faced in datasets with a large number of attributes. Let D = O × A be a
dataset presented in the form of a matrix, where O is the set of objects and A is the
set of attributes. A subspace cluster C is a submatrix O × A, where the set of objects
O ⊆ O is homogeneous in the set of attributes (also known as subspace) A ⊆ A.

Research on subspace clustering has been gathering momentum for the past decade.
Basic subspace clustering focuses on objects which are closely together in their sub-
spaces, and three major variants of it have been developed, viz. the grid based, window
based and density based. Although these approaches are efficient and effective in solv-
ing their clustering problems, their limitations are exposed by the recent proliferation
of complex data and the need for higher quality clustering results. These fuel the
research in enhanced subspace clustering, which is the main focus of this survey.

Enhanced subspace clustering can be broadly classified into two groups, namely
handling complex data and improving clustering results.

– Handling complex data The basic subspace clustering approaches only handle
quantitative two-dimensional (2D) data (object × attribute), and do not handle
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complex data of higher order 3D data (object × attribute × time), infinite stream-
ing data, noisy data or categorical data.

– Improving clustering results Improving clustering results derives from the short-
comings of basic subspace clustering approaches, which can be broadly catego-
rized into three types.
First, overlapping of subspace clusters may, in certain situations, lead to an explo-
sion of too many clusters, which is undesirable as the user will be overwhelmed
by the huge numbers. Hence, instead of enumerating all subspace clusters that sat-
isfy the definition of the cluster, significant subspace clusters that are intrinsically
prominent in the data should be mined.
Second, the current algorithms require the user to set tuning parameters, and clus-
ters that satisfy these parameters will be mined. These algorithms are generally
sensitive to these tuning parameters, and given that tuning parameters are non-
meaningful and non-intuitive, it is difficult for the user to set the right parameter
settings. This situation is exacerbated as existing algorithms are abounded with
tuning parameters, thereby complicating the clustering task. Therefore, it is desir-
able to overcome this parameter-sensitivity problem of the existing algorithms.
Third, the user may have useful information such as constraints or domain knowl-
edge that can help to improve the quality of the clusters, but the basic subspace
clustering approaches cannot incorporate these extra information. Incorporating
these extra information can be viewed as a form of semi-supervised subspace
clustering, as they are used to guide the clustering process.

In this survey, we present enhanced subspace clustering approaches that handle
complex data and/or improve the clustering results, which to the best of our knowl-
edge, is an important data mining topic that has not yet been given a comprehensive
coverage.

The usual surveys give a systematic presentation of how the algorithms work. Our
survey style is different from them as we decouple the subspace clustering prob-
lems and the solutions; the reader will first understand the problems and what desired
properties they seek in their clustering solutions. Next, the reader will understand
the solutions and their properties, and if the properties of the solutions do satisfy the
desired properties that the problems seek.

1.1 Related surveys

There are a number of surveys on traditional clustering (Jain et al. 1999; Berkhin 2006;
Xu and Wunsch 2005). The style of these surveys is similar, in which the clustering
algorithms are organized into different categories, and explained in detail. However,
the clustering algorithms are presented in different perspective in these surveys. Jain
et al. (1999) present the clustering algorithms from a statistical pattern recognition per-
spective, and important applications of traditional clustering are also given. Berkhin
(2006) presents the clustering algorithms from a data mining perspective. He also
briefly touched on the topic of clustering high-dimensional data, particularly subspace
clustering and co-clustering. Xu and Wunsch (2005) present the clustering algorithms
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from three different perspectives, namely statistical, computer science and machine
learning, and some applications of traditional clustering are also given.

There are several surveys on high-dimensional clustering (Jiang et al. 2004b;
Madeira and Oliveira 2004; Parsons et al. 2004; Tanay et al. 2004; Parsons et al.
2004; Patrikainen and Meila 2006; Moise et al. 2009; Müller et al. 2009d; Kriegel
et al. 2009), and we can roughly categorize them into two types: theoretical and
experimental surveys.

For the theoretical surveys, they conduct in-depth analysis and discussions on the
clustering algorithms. Madeira and Oliveira (2004), Jiang et al. (2004b), and Tanay
et al. (2004) give surveys on pattern based clustering or biclustering algorithms, and
their applications in microarray gene expression data. Kriegel et al. (2009) give a
comprehensive survey in clustering high-dimensional data, which is categorized into
three main family of algorithms: subspace clustering, pattern based clustering and
correlation clustering.

For the experimental surveys (Parsons et al. 2004; Patrikainen and Meila 2006;
Moise et al. 2009; Müller et al. 2009d), they describe subspace clustering, projected
clustering and pattern based clustering algorithms, and at the same time, conduct exper-
imentations to evaluate the scalability, efficiency and accuracy of the algorithms.

In spite of the fact that there are a considerable number of existing surveys, none
of them discuss about enhanced subspace clustering.

1.2 Layout of the survey

The layout of the survey is as follows:

1. Introduction
(a) Related Surveys
(b) Layout of the Survey

2. Subspace Clustering: Problems
(a) Preliminaries
(b) Basic Subspace Clustering Problems
(c) Enhanced Subspace Clustering Problems

i. Handling Complex Data
ii. Improving Clustering Results

3. Related High Dimensional Clustering Techniques
(a) Attribute Selection and Reduction
(b) Projected Clustering
(c) Maximal Bicliques and Frequent Patterns
(d) Pattern based Clustering
(e) Correlation Clustering
(f) Co-Clustering
(g) Summary

4. Basic Subspace Clustering: Approaches and their Definitions
(a) Grid based Subspace Clustering
(b) Window based Subspace Clustering
(c) Density based Subspace Clustering
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5. Enhanced Subspace Clustering: Approaches and their Definitions
(a) Handling Complex Data

i. 3D Data
ii. Categorical Data

iii. Stream Data
iv. Noisy Data

(b) Improving Clustering Results
i. Significant Subspace Clustering

ii. Semi-Supervised Subspace Clustering
(c) Summary

6. Subspace Clustering: Algorithms
(a) Lattice based Algorithm
(b) Statistical Model Method
(c) Approximation Algorithm
(d) Hybrid Algorithm
(e) Summary

7. Open Problems
8. Conclusion

2 Subspace clustering: problems

2.1 Preliminaries

We present some notations that will be used in the rest of this survey. We adopt the
definition of tensor by Sun et al. (2007) to describe our dataset. Let our dataset be a
kth order tensor D ∈ R

N1×...×Nk , where Ni is the dimensionality of the i th mode, for
1 ≤ i ≤ k.

In this survey, we focus on 2nd and 3rd order tensors, as they are the most common
types of dataset used in clustering. For convention’s sake, we denote a 2nd order tensor
as a two-dimensional (2D) dataset which has dimension objects and attributes, and
a 3rd order tensor as a three-dimensional (3D) dataset which has dimension objects,
attributes and timestamps.

In the literature, the term dimension is often used interchangeably with attribute.
Indeed, attributes should be a dimension of the dataset. However, to cover terminology
used in the literature, we refer to a 2D dataset with a large number of attributes as high
dimensional 2D dataset.

Let O be a set of objects and A be a set of attributes. We use |.| to denote the
cardinality of a set. The attributes can be binary, categorical, discrete or continuous.
Let xa be a value of an attribute a and the domain of a be D(a). Let max(D(a)) and
min(D(a)) be the maximum and minimum values in domain D(a) respectively, and
we denote the range of the domain of attribute a as Ra = max(D(a)) − min(D(a)).

We represent a 2D dataset as a matrix D = O × A, with the value of object o ∈ O

on attribute a ∈ A be denoted as xoa . Let O ⊆ O be a set of objects and A ⊆ A be
a set of attributes. The set of attribute A is also known as the subspace of the dataset.
A 2D subspace cluster C = (O, A) is a submatrix O × A.
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We denote DO(a) ⊆ D(a) as the domain of attribute a projected on a set of objects
O , i.e. ∀xa ∈ DO(a) : ∃o ∈ O such that xoa = xa .

Let AL L = {C1, . . . , Cm} be the set of possible subspace clusters from a dataset,
and let M = {C1, . . . , Cn} = {(O1, A1), . . . , (On, An)} ⊆ AL L be a set of subspace
clusters.

2.2 Basic subspace clustering problems

We introduce the basic subspace clustering problem. Subspace clustering finds
clusters where sets of objects are homogeneous in sets of attributes. We can char-
acterize subspace cluster C by the following two functions:

Definition 1 (Homogeneous function h(C)) The homogeneous function h(C) mea-
sures the homogeneity in the matrix O × A. We say that the matrix is homogeneous
when h(C) is satisfied, e.g. a threshold is met.

Definition 2 (Support function π(C)) The support function π(C) measures the size
of the matrix O × A. We say that the size of the matrix is significant when π(C) is
satisfied, e.g. a threshold is met.

C = (O, A) is a subspace cluster when (1) the set of objects O are homogeneous
in the set of attributes A, and (2) the size of the matrix O × A, is significant. The
homogeneity of the set of objects O in the set of attributes A is measured by the
homogeneous function h(C), and the size of the cluster C is measured by the support
function π(C). Hence, these two functions are the basis of defining a subspace cluster.

Since different subspace clustering approaches solve different problems, they have
their own homogeneous and support functions, and it is possible that some only have
one of the functions. With the two functions, we can formally define a subspace cluster
as:

Definition 3 (Subspace cluster C = (O, A)) Let O be a set of objects and A be a
set of attributes. Matrix O × A forms a subspace cluster C = (O, A) if

– the homogeneous function h(C) is satisfied
– the support function π(C) is satisfied
– ∀o ∈ O : o is allowed to be in other subspace cluster C ′

Note that we only discuss subspace clusters that are axis-parallel, as the submatrix
O × A of a cluster C = (O, A) is parallel to the axes of the dataset.

The third criterion of Definition 3 distinguishes subspace clusters from other
high-dimensional data clustering approaches, such as projected clusters and co-clus-
ters, which partition the objects into different clusters. Details about them will be
discussed in Sect. 3.

If A is equivalent to the whole set of attributes A of the dataset, then the cluster is
a traditional cluster.

Desired properties of the clusters:
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– Homogeneity The homogeneity can be based on similarity, distance, density,
etc, depending on the clustering problem. A commonly used metric is Euclidean
distance. For example, a set of objects O can be said to be homogeneous, if their
pairwise distances are relatively small in the Euclidean space of the subspace A
(partitioning clustering model), or if they are density-connected within the Euclid-
ean space of the subspace A (density based clustering model), or if they exhibit
common trends within the subspace A (some pattern based clustering models).
After deciding on the metric, the next problem is to determine the homogeneity
of a cluster. The general solution is to set a threshold and the cluster is considered
homogeneous if its homogeneous function exceeds the threshold.

– Significant size Similar to determining homogeneity, it is hard to decide the
significant size of the cluster. The general solution is to set threshold on the size
of the cluster. Setting threshold serves two purposes: first, the user may prefer
large clusters as the significance of a cluster may be related to its size. Second,
analysis of the result is easier as large clusters are usually fewer in numbers.

– Maximal clusters The concept of maximality is proposed by Pasquier et al. (1999)
for frequent itemsets. A subspace cluster C = (O, A) is maximal if there does
not exist another subspace cluster C ′ = (O ′, A′), such that O ⊆ O ′ ∧ A ⊆ A′.
A cluster that is a subset of a maximal cluster conveys the same information as
the maximal cluster, hence mining maximal clusters ensures no redundancies in
the results. As the use of maximality is prevalent, we assume that the clusters
discussed in the rest of this survey have the maximality property, unless otherwise
stated.
A more relaxed version of maximality, known as redundancy is proposed in
(Assent et al. 2007, 2008b). A subspace cluster (O ′, A′) is redundant if there
exists a subspace cluster (O, A) with O ′ ⊆ O ∧ A ⊂ A′ ∧ |O ′| ≥ r.|O|, where r
is a user-defined parameter.

Desired properties of the algorithm:

– Complete result It is desirable to mine the complete set of subspace clusters,
so that important clusters are not omitted. However, the user should not be over-
whelmed by a large number of clusters, which is why recent approaches focus
more on omitting redundant clusters (Details are in Sect. 5.2.1).

– Stable result The same set of clusters should be mined from the same dataset in
every execution of the algorithm. This is vital as the result is unusable if the result
is unstable. For example, unstable results cannot be used in experimental studies
to backup hypotheses. Ensemble approaches, however, sometimes try to establish
a stable result based on a diverse set of (unstable) results (see Kriegel and Zimek
2010, for an overview).

– Efficiency It is important to have an efficient algorithm to handle high dimensional
datasets. To this end, heuristics and assumptions are used in the algorithms.

2.3 Enhanced subspace clustering problems

The need for enhanced subspace clustering can be broadly categorized into two main
parts, namely handling complex data and improving the clustering result. Enhanced
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Fig. 1 a A 3D dataset as a cuboid D = O × A × T, b A 3D subspace cluster C = (O, A, T ) represented
as a sub-cuboid O × A × T

subspace clustering is about solving problems beyond the scope of basic subspace
clustering, and is not to improve existing subspace clustering algorithms (Assent et al.
2008a; Nagesh et al. 2001; Sequeira and Zaki 2004; Assent et al. 2007).

Note that the desired properties of the basic subspace clusters still hold for the
enhanced subspace clusters, and each enhanced subspace cluster also has its own
desired properties pertaining to the problem that it is solving.

2.3.1 Handling complex data

The basic subspace clustering problem focuses on 2D data, and not on complex data,
such as 3D, categorical, stream or noisy data.

Three-Dimensional (3D) data With the advancement of data gathering over the
years, more 3D datasets have been collected, such as gene-sample-time microarray
data in biology (Madeira and Oliveira 2004), stock-financial ratio-year data in finance
(Sim et al. 2006), item-time-region data in market analysis (Ji et al. 2006), etc.

Let T be a set of entities that corresponds to the third dimension, and the entities
usually are related to time or location. In this survey, we assume that the third dimen-
sion is related to time. We represent a 3D dataset as a cuboid D = O × A × T, with
the value of object o ∈ O on attribute a ∈ A, at timestamp t ∈ T be denoted as xoat .
Figure 1a shows an example of a 3D dataset, with each cell representing a value xoat .

2D subspace clusters can be mined from each time frame of the 3D dataset, but
a large number of clusters will be mined, and the relation of the clusters across time
is not explored. Therefore, a better solution is to extend the subspace clusters to 3D,
which are subspace clusters that persist or evolve across time.

Definition 4 (3D subspace cluster C = (O, A, T )) Let O be a set of objects, A be a
set of attributes, and T be a set of timestamps T . Cuboid O × A × T forms a subspace
cluster C = (O, A, T ) if

– the homogeneous function h(C) is satisfied
– the support function π(C) is satisfied
– ∀o ∈ O : o is allowed to be in other subspace cluster C ′
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Figure 1b shows an example of a 3D subspace cluster C = (O, A, T ), which is a
sub-cuboid O × A × T .

Desired properties of the clusters:

– Homogeneity The homogeneous function is extended to 3D, which measures
the homogeneity of the values in the sub-cuboid O × A × T .

– Significant size The support function measures the size of the sub-cuboid
O × A × T .

– Maximal clusters Same as basic subspace clusters.
– Concept of subspace in the third (time) dimension Having the concept of sub-

space in the time dimension means that the 3D subspace cluster exists in some
timestamps of the dataset, and not across all time. It is highly unlikely to have
clusters that are persistent in each timestamp of a dataset, especially in a data-
set that has a large number of timestamps. Moreover, this persistency may not
be important in some problems, for example, if the third dimension is location.
However, in certain problems, it may be desirable to mine clusters that exist in
subsets of continuous timestamps.

Desired properties of the algorithm:

– Complete and stable result Same as basic subspace clusters.
– Efficiency Efficient mining is generally more difficult to achieve in 3D data than

2D data, and using 2D subspace clustering algorithms to mine 3D subspace clus-
ters is not an efficient solution. For example, we can mine 2D subspace clusters
in each timestamp, and then use these 2D subspace clusters as candidates to mine
3D subspace clusters. This approach can be highly inefficient if a large number
of redundant 2D subspace clusters are generated, which are not part of any 3D
subspace clusters. Thus, 3D subspace clustering algorithm that can aggressively
prune the 3D search space is needed for efficient mining of the clusters.

Categorical data In categorical data, its values have no natural order, and there
is no distance information between them. These two characteristics make categorical
data hard to cluster, as existing distance measures cannot be used. Hence, in a subspace
cluster C = (O, A) of categorical data, the set of objects O have the same value for
each attribute a ∈ A. Hence, the subspace cluster is formed by a set of attribute values
and a set of objects.

Desired properties of the clusters:

– Homogeneity The homogeneous criterion is generally the identity of the val-
ues for each attribute in the subspace cluster. Hamming distance or Jaccard index
(Guha et al. 1999) can be used on the objects, if some dissimilarity in attributes
are allowed.

– Significant size, Maximal clusters Same as basic subspace clusters.

Desired properties of the algorithm:

– Complete and stable result, Efficiency Same as basic subspace clusters.

Stream data Stream data is not to be confused with the 3D data (object × attribute
× time). In the 3D data, each of its dimension is finite, while the stream data is a 2D
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data (object × attribute), with one of the dimension being infinite and the other being
finite.

Let us denote D = O × A as a stream data, and there are two types of stream
data. The first type has streaming objects O = {o1, . . . , oi , . . .} with a fixed set of
attributes A. The second type has a fixed set of objects (each object is still considered
as a stream) but with streaming attributes. In this type, the objects only contain one
attribute, but values of this attribute are streamed into the data and are indexed by
timestamps. Thus, A = {at1 , . . . , ati , . . .}, where ati denotes the attribute a at time ti .

Desired properties of the clusters:

– Homogeneity, Significant size, Maximal clusters Same as basic subspace clusters.

Desired properties of the algorithm:

– Complete and stable result Same as basic subspace clusters.
– Efficiency Due to the streaming nature of the data, the algorithm is generally

required to read the data once or the mining is restricted within a fixed window of
the stream data.

– Up-to-date clustering The subspace clusters have to be constantly updated with
respect to the continuous data stream.

Noisy data Noisy data can contain erroneous, missing or uncertain values, and
real-world data are notorious for being noisy, such as microarray gene expression data
in biology, sensors data in smart home systems, stock prices and financial ratios data
in finance, etc. Therefore, it is vital to have subspace clustering approaches that can
handle noisy data, so that useful clusters can still be found in the presence of noise.

The representation of uncertain data is different from standard matrix D = O × A.
For uncertain data, each attribute value of an object is sampled multiple times, i.e.,
there are multiple values xoa of the object o on attribute a, and so, each value is
represented as a probability distribution.

Desired properties of the clusters:

– Homogeneity, Significant size, Maximal clusters Same as basic subspace clusters.
– Tolerate noisy data The subspace cluster C = (O, A) should be able to tolerate

missing or erroneous values. In other words, the clustering approach should be
able to infer if an erroneous or missing value should be part of a cluster.

– Handle uncertain data The subspace cluster should be able to account for the
uncertainty of the data.

Desired properties of the algorithm:

– Complete and stable result, Efficiency Same as basic subspace clusters.

2.3.2 Improving clustering results

The clustering result can be improved in a variety of ways, from mining significant
subspace clusters to using parameter-insensitive clustering approaches. In
parameter-insensitive clustering, the ‘true’ subspace clusters are discovered and they
are not manifestations of skewed parameter settings.
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Significant subspace clustering Significant subspace clusters are clusters that
are intrinsically prominent in the data, and are more interesting or meaningful than
other clusters. They are usually small in numbers, which are easier to analyze.

Desired properties of the clusters:

– Homogeneity, Significant size, Maximal clusters Same as basic subspace clusters.
– Significant clusters There is no universal accepted definition of significant sub-

space clusters. As a rule of thumb, a subspace cluster is significant if it is more
interesting or meaningful than other clusters, based on criteria of the clustering
approach.

Desired properties of the algorithm:

– Complete and stable result, Efficiency Same as basic subspace clusters.

Semi-supervised subspace clustering In semi-supervised subspace clustering,
additional knowledge such as domain knowledge or user’s preference is used in the
clustering process.

Desired properties of the clusters:

– Homogeneity, Significant size, Maximal clusters Same as basic subspace clusters.
– Semi-supervised clusters The additional knowledge is used to improve the quality

of the subspace clusters.

Desired properties of the algorithm:

– Complete and stable result Same as basic subspace clusters.
– Efficiency The additional knowledge is used to improve the efficiency of the

algorithm, by guiding the algorithm to regions of the search space with clusters
and pruning regions without clusters.

Overcoming parameter-sensitive subspace clustering The current paradigm
of subspace clustering requires the user to set parameters, and clusters that satisfy
these parameters are returned. We can broadly classify the parameters into cluster
parameters and algorithm parameters, where cluster parameters are used in defin-
ing the clusters and algorithm parameters are used in guiding the clustering process.
For example, user-selected centroid is a cluster parameter, as the cluster is formed
by objects similar to the centroid. On the other hand, the parameter k in k-means
clustering is an algorithm parameter, as it determines the clustering process.

In some cases, the parameter can be both cluster and algorithm parameter. For exam-
ple, constraints such as must-link and cannot-link (Wagstaff et al. 2001) are cluster
parameters, as they respectively indicate which objects should be clustered together,
and which objects should not be clustered together. These constraints are also algo-
rithm parameters, as they can be used in improving the efficiency of the clustering
process. In another example, the minimum size threshold of the cluster is a parameter
of both cluster and algorithm, as it defines the size of the cluster, and it can be used to
prune regions of the search space which do not contain clusters that have the minimum
size.

From another perspective, we can also classify the parameters as tuning parameters
and semantical parameters, based on their usage (Kriegel et al. 2007). Tuning param-
eters are used to tune the efficiency of the algorithm or the quality of the clusters, and
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Table 1 The parameter matrix

Tuning parameter Semantical parameter
Tune the quality of the clustering
result or efficiency of the algo-
rithm

Meaningful parameters and the
domain knowledge or preference
of the user can be incorporated
into them

Cluster parameter
Define the cluster

Minimum size threshold,
distance threshold

Minimum size threshold, must-link
and cannot-link constraints, distance
measure, user-selected centroids

Algorithm parameter
Guide the clustering
process

Minimum size threshold, maximum
number of iterations, number of
clusters, sliding window size

Minimum size threshold, must-link
and cannot-link constraints

A parameter can be categorized into two categories: (1) cluster or algorithm parameter, and (2) tuning or
semantical parameter. The cells in the matrix are examples of the different types of parameters

semantical parameters are meaningful parameters that describe the semantics of the
clusters and domain knowledge of the user can be incorporated into these parameters.
For example, the maximum number of iterations allowed in an optimization algorithm
(Nocedal and Wright 2006) is a tuning parameter, as it determines the accuracy and
efficiency of the algorithm. On the contrary, the must-link and cannot-link constraints
are semantical parameters, as they are based on the domain knowledge of the user.

In certain cases, a parameter can either be a tuning parameter or a semantical
parameter, depending on the user. For example, if the user has domain knowledge,
then minimum size threshold can be a semantical parameter, whereas if the user does
not have the domain knowledge, then minimum size threshold is a tuning parameter.

Based on these classifications, we can present the categories of the parameters
as a parameter matrix, shown in Table 1. Semantical parameters can be desirable as
they enable the users to flexibly control the results, based on their knowledge. On the
other hand, tuning parameters are usually non-meaningful and non-intuitive, making
it difficult for the user to set the correct parameters.

Setting of tuning parameters should be avoided (Kriegel et al. 2007). If these param-
eters are set based on the biased assumptions of the user, highly skewed clusters
will likely to be generated. Furthermore, subspace clustering algorithms are typically
abound with tuning parameters, thereby increasing the burden of the user.

To relieve the user of this dilemma, these parameters should be few in numbers.
If it is not possible, then the tuning parameters should be insensitive to the clustering
results, so that the clusters do not change dramatically under slight variations of the
tuning parameters.

In the rest of this survey, we focus on tuning parameters when we discuss on param-
eter-light and parameter-insensitivity properties.

Desired properties of the clusters:

– Homogeneity, Significant size, Maximal clusters Same as basic subspace clusters.
– Parameter-light The subspace cluster should be parameter-light, where only few

tuning parameters are used in defining the cluster.
– Parameter-insensitivity The subspace cluster is parameter-insensitive when it

can be obtained under a range of settings on the tuning parameters.
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Clustering

Traditional
Perform clustering in full
space (whole set of attributes)
E.g. Hierarchical and
Partitioning algorithms

Overcome curse of dimensionality

Attribute reductionAttribute selection

Linear transformation of the
entire set of attributes into a
smaller set of attributes
Perform traditional clustering
in transformed set of
attributes
E,g. Adaptive dimension
reduction

Filter model Wrapper model

Selects a subset of attributes
Performs clustering in the
subset of relevant attributes
E.g. Distance-based entropy
measure

The clustering algorithm
is first used to evaluate
subsets of attributes
The same clustering
algorithm is used to
perform clustering on
the best subset of
attributes

Iterative process of the
following two phases:
1. Selects subsets of
attributes (subspaces)
2. Performs clustering in
subspaces

Overlapping clusters Non-overlapping clusters

E.g. Subspace clusters,
correlation clusters, pattern-
based clusters, biclusters,
maximal bicliques

E.g. Projected clusters, co-clusters

High dimensional
clustering

Fig. 2 Overview of the different approaches to overcome the curse of dimensionality

Desired properties of the algorithm:

– Complete and stable result, Efficiency Same as basic subspace clusters.
– Parameter-light The algorithm is parameter-light when few tuning parameters

are required to control the running of the algorithm.
– Parameter-insensitivity The algorithm is parameter-insensitive when it is efficient

and the result is stable under a range of settings on the tuning parameters.

3 Related high dimensional clustering techniques

We briefly discuss high-dimensional clustering techniques that are related to subspace
clustering. Figure 2 presents an overview of the different high dimensional clustering
techniques.

3.1 Attribute selection and reduction

There are two existing solutions to the curse of dimensionality problem in high dimen-
sional clustering, namely attribute reduction and attribute selection1.

3.1.1 Attribute reduction

In attribute reduction, the large set of attributes is transformed into a smaller set of
attributes, and traditional clustering can be applied on the transformed data without suf-
fering from the curse of dimensionality (Ding et al. 2002). The transformation is usu-
ally based on Principal Component Analysis (PCA) or Singular Value Decomposition

1 Also known as feature reduction and feature selection.
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(SVD), which results in the transformed set of attributes being a linear combination
of the original set of attributes.

However, this approach itself has several weaknesses. Firstly, PCA or SVD is highly
sensitive to noisy objects, and since the transformation is dependent on all objects,
the transformed set of attributes may be distorted by the noisy objects, and are not
helpful in distinguishing the clusters. Secondly, analysis of clusters is difficult, as the
transformed set of attributes bear no semantic meanings. Thirdly, clusters may exist
in different subspaces (sets of attributes A ⊆ A), and this information is lost after
attribute reduction.

3.1.2 Attribute selection

In attribute selection, a subspace A ⊆ A in which the objects are homogeneous, is
selected for clustering, and there is no transformation of the attributes. There are two
main models of attribute selection, the filter and the wrapper models. The filter model
selects a set of relevant attributes (Dash et al. 2002), and then a traditional clustering
algorithm is applied on them. Thus, it is independent of the clustering algorithm.

In the wrapper model, the clustering algorithm is a black box which is used to
evaluate the quality of different subspaces. After the best subspace is found, the same
clustering algorithm is used to mine clusters from it (Kohavi and John 1997).

High dimensional clustering (such as subspace clustering and projected clustering)
assumes that different sets of objects can be homogeneous in different subspaces; hence
high dimensional clustering is an iterative process of selecting relevant subspaces and
performing clustering on them, with these two phases being closely interlinked. On
the other hand, both filter and wrapper models just find the best subspace and perform
clustering on it.

3.2 Projected clustering

Projected clustering (Aggarwal et al. 1999) finds clusters that are similar to subspace
clustering, where in a cluster, its set of objects are homogeneous in its set of attributes.
As a matter of fact, some projected clustering techniques refer themselves as sub-
space clustering techniques (Domeniconi et al. 2004; Chan et al. 2004), which leads
to confusion between these two types of clustering techniques.

The main difference of projected clustering from subspace clustering is that there
is no overlapping of clusters in projected clustering, i.e. an object can only be assigned
to a cluster. Hence, projected clustering can be considered as a partitioning technique.

However, partitioning of objects may be a harsh requirement, as allowing an object
to be in different clusters allows the understanding of the different perspectives of the
object. Details on projected clustering can be found in the survey by Kriegel et al.
(2009).
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(a) (b) (c)

Fig. 3 a A binary dataset D with subspace cluster {o2, o3, o4} × {a2, a3}. b The subspace cluster corre-
sponds to a maximal biclique subgraph (the pair of circled vertex sets) in the bipartite graph. c The subspace
cluster corresponds to a frequent pattern a2, a3 with occurrence set {o2, o3, o4} in the transactional dataset

3.3 Maximal bicliques and frequent patterns

Let us assume that the dataset is a binary dataset, i.e. D = O×A ∈ {0, 1}|O|×|A|, with
an example shown in Fig. 3a. D can be represented as a bipartite graph G, where both
the set of objects O and the set of attributes A are sets of vertices respectively, and an
edge {o, a} exists in the graph if value xoa = 1, as shown in Fig. 3b.

Let G denote a bipartite graph representing D, which consists of two sets of dis-
joint vertices V (G) = {O, A} and a set of edges E(G) = {{o, a}|o ∈ O ∧ a ∈ A}. A
graph g is a subgraph of G if V (g) ⊆ V (G) and E(g) ⊆ E(G). A subgraph g with
V (g) = {O, A} is a biclique subgraph of G iff E(g) = {{o, a}|∀o ∈ O ∧∀a ∈ A}, i.e.
every vertex o in vertex set O is connected to every vertex a in vertex set A. A biclique
subgraph g is maximal if there does not exist another biclique subgraph g′ such that
V (g) ⊆ V (g′) and E(g) ⊆ E(g′). An example of a maximal biclique subgraph is
shown in the circled vertex sets of Fig. 3b.

Mining maximal biclique subgraphs from graph G is equivalent to mining maxi-
mal subspace clusters from its 2D binary dataset D. The equivalence is obvious and is
proven in (Li et al. 2005). For a maximal biclique subgraph g with V (g) = {O, A}, the
submatrix O × A in its adjacency matrix are all ‘1’s, which is equivalent to a subspace
cluster (O, A). For example, the maximal biclique subgraph of Fig. 3b corresponds to
the subspace cluster ({o2, o3, o4}, {a2, a3}) of Fig. 3a. Thus, for binary dataset, effi-
cient mining maximal biclique subgraphs algorithm (Liu et al. 2006) can be used to
mine subspace clusters.

The dataset D can also be represented as a transactional dataset, as shown in Fig. 3c.
Let the set of attributes A be a set of items, and a transaction T be a subset of A.
The transactional dataset contains rows of transactions, and id(T ) is denoted as the
transaction identifier of transaction T . For each object o ∈ O, a transaction with
identifier id(T ) = o can be created, and the transaction contains items a ∈ A where
xoa = 1 ∈ D.

Let P ⊆ A be a pattern and occ(P) = {id(T )|P ⊆ T } be the occurrence set of the
pattern P . A pattern P is closed if adding any item A\P to it will lead to the decrease
of its occurrence set. Li et al. (2005) show that a pair of closed pattern P and its occur-
rence set occ(P) correspond to a biclique subgraph g with V (g) = {O, A}, where
P = A and occ(P) = O . Therefore, it is possible to mine closed patterns (Uno et al.
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(a) (b) (c)

Fig. 4 a A pattern based cluster with homogeneity on the attributes, b a pattern based cluster with homo-
geneity on the objects, and c a pattern based cluster with homogeneity on both attributes and objects

2004) and do a post-processing to retrieve their occurrence sets, to obtain the maximal
biclique subgraphs, which in turn correspond to subspace clusters. For example, the
frequent pattern a2, a3 with occurrence set {o2, o3, o4} in the transactional dataset of
Fig. 3c corresponds to the subspace cluster ({o2, o3, o4}, {a2, a3}) of Fig. 3a.

If discrete dataset is involved, then quantitative patterns (Srikant and Agrawal 1996;
Ke et al. 2006) with their occurrence sets correspond to subspace clusters. Quantitative
patterns focus on mining patterns with significant occurrences, and simple occurrence
threshold (Srikant and Agrawal 1996) or mutual information (Ke et al. 2006) have
been used to determine whether their occurrences are significant. This is different
from subspace clusters, which are sets of objects being homogeneous in sets of attri-
butes.

3.4 Pattern based clustering

Pattern based clustering, also known as biclustering, is originally used in analysis of
microarray gene expression data (Cheng and Church 2000). In a 2D microarray data-
set, the genes are the objects and the samples are the attributes. Similar to subspace
clustering, pattern based clustering mines clusters where a cluster is a set of objects
that are homogeneous in a set of attributes, and overlapping of clusters is allowed.
However, there are two subtle differences in these two types of clusters. First, the
submatrix defined by the objects (rows) and attributes (columns) of a pattern based
cluster exhibits a pattern. Second, the objects and attributes of a pattern based cluster
are treated equally, but this is not the case for a subspace cluster. This equal treatment of
pattern based cluster encourages more flexibility in its homogeneity; its homogeneity
can be on the attributes, on the objects, or on both attributes and objects.

Homogeneity on the attributes means that the objects are homogeneous in each
attribute, e.g. the objects have similar values in each attribute, as shown in the pattern
based cluster of Fig. 4a. Homogeneity on the objects means that each object is homo-
geneous in the attributes, e.g. the attributes have similar values for each object, as
shown in the pattern based cluster of Fig. 4b. On homogeneity on both objects and
attributes, a simple example is where all values in the cluster have similar values. A
more common type of this homogeneity is shifting or scaling of values across attri-
butes and objects. Figure 4c shows a pattern based cluster of shifting homogeneity on
both attributes and objects.

The following definition is popularly used in defining the shifting or scaling homo-
geneity:
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Definition 5 (pScore) Given a submatrix M =
[

xoa xoa′
xo′a xo′a′

]
⊆ O × A, the pScore of

the submatrix is |(xoa − xoa′) − (xo′a − xo′a′)|.

The pattern based cluster (O, A) exhibits a shifting pattern if the pScore of any
of its submatrix M is less than a user-specified parameter δ (Wang et al. 2002). The
pattern based cluster of Fig. 4c has shifting homogeneity as the pScore of any of its

submatrix is 0. For example, the pScore of submatrix

[
1 2
4 5

]
, is |(1−2)−(4−5)| = 0.

Note that Definition 5 is symmetric, |(xoa −xoa′)−(xo′a −xo′a′)| = |(xoa −xo′a)−
(xoa′ − xo′a′)|. To find scaling patterns in the submatrix, we simply convert the values
of the submatrix into their logarithm form and apply the pScore on the submatrix.

The values in a pattern based cluster (O, A) can also be expressed by the following
equation, with αo and βa determining the type of homogeneity in the cluster.

xoa = μ + αo + βa (1)

μ is a typical value in the cluster, αo is the adjustment for object o ∈ O and βa is the
adjustment for attribute a ∈ A. For example, αo = 0, βa > 0 mean that the cluster has
similar values for each attribute, and αo > 0, βa > 0 mean that the cluster has shifting
pattern. For example, the pattern based cluster of Fig. 4c has μ = 1, αo3 = 6, βa3 = 2,
which results in xo3a3 = 1 + 6 + 2 = 9. Scaling pattern in the cluster can also be
expressed by replacing the values with their logarithm form.

For more complex homogeneity, Xu et al. (2006) combine both shifting and scaling
patterns by using the equation xoa = α.xo′a +β, where α, β are the scaling and shifting
factors respectively. There are also some clusters which are hybrids of subspace cluster
and pattern based cluster, such as the tricluster (Zhao and Zaki 2005). Comprehensive
surveys on pattern based clustering can be found in (Madeira and Oliveira 2004; Jiang
et al. 2004b; Tanay et al. 2004), and a detailed comparison of subspace clustering and
pattern based clustering can be found in (Kriegel et al. 2009). The close relationship
between frequent pattern mining and subspace clustering has been pointed out recently
(Vreeken and Zimek 2011).

3.5 Correlation clustering

Equation 1 shows that the homogeneity of pattern based clusters can be expressed
as simple linear equations. Correlation clustering (Böhm et al. 2004) generalizes this
concept and finds clusters that display any types of linear equations. More specifically,
a correlation cluster is a set of objects whose values are positively or/and negatively
correlated on a set of attributes.

Correlation clustering usually does not allow overlapping clusters, though this is
based on algorithmic reasons and not in the nature of the task definition. For exam-
ple, algorithm 4C (Böhm et al. 2004) does not mine overlapping correlation clusters.
However, if we consider the correlation cluster model (Achtert et al. 2006b), mining
overlapping clusters is not an issue.

123



A survey on enhanced subspace clustering 349

More details on correlation clustering can be found in (Kriegel et al. 2009). A sim-
ilar approach to correlation clustering is ASI clustering (Li et al. 2004), where objects
are clustered based on subspaces where there are linear combinations of the attributes.
However, ASI clustering is more related to projected clustering, as it partitions the
objects into clusters.

3.6 Co-clustering

Co-clustering is developed primarily to cluster word-document dataset (Dhillon et al.
2003), which is a 2D contingency table represented as a matrix. In the matrix, the rows
and columns correspond to documents and words respectively, with the value xoa in
the matrix representing the probability or the occurrence of the word a (column) in
the document o (row).

The contingency matrix is partitioned into l sets of documents {O1, . . . , Ol} and k
sets of words {A1, . . . , Ak}, and the user is required to specify the number of partitions
l, k. A set of documents O and a set of words A are then used to form a co-cluster
C = (O, A). Thus, there is no overlapping of clusters in co-clustering.

Most of the co-clustering techniques find co-clusters such that the occurrences or
probabilities of the words in the documents are similar in a co-cluster. Graph partition-
ing (Dhillon 2001; Rege et al. 2006) and mutual information (Dhillon et al. 2003; Sim
et al. 2009a; Gao et al. 2006; Chiaravalloti et al. 2006) are the common techniques
used in co-clustering, with mutual information as the more popular one. In mutual
information technique, the optimal set of co-clusters is obtained by minimizing the
mutual information between I (O; A) and I ({O1, . . . , Ol}; {A1, . . . , Ak}).

Co-clustering is also applied in the 2D microarray dataset (Pensa and Boulicaut
2008), but co-clustering is a partitioning approach that mines non-overlapping clus-
ters, which is different from the overlapping clusters of pattern based clustering.

3.7 Summary

Table 2 gives a comparison of the properties of the related high-dimensional tech-
niques. On the types of data that are handled by the techniques, we denote continuous,
discrete, categorical, word-document and binary as CO, D, CA, WD and B respec-
tively. We differentiate word-document data from quantitative data, as word-document
data can either be discrete (when occurrences of words in documents are used) or con-
tinuous (when probabilities of words in documents are used).

We indicate if the high-dimensional techniques mine overlapping clusters and 3D
clusters. We also indicate the commonly used homogeneity function in the techniques:
For subspace cluster or projected cluster (O, A), it has similar values for each attribute
a ∈ A, in its submatrix O × A. For maximal biclique or frequent pattern, if it is repre-
sented by a binary subspace cluster (O, A), it has value ‘1’s for each attribute a ∈ A,
in its binary submatrix O × A. For pattern based cluster or correlation cluster (O, A),
the values in its matrix O × A can be expressed in a linear equation. For co-cluster
(O, A), the values in its matrix O × A have similar probabilities or co-occurrences.
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Table 2 A comparison of the properties of different high-dimensional clustering techniques

High-dimensional
clustering technique

Data type it
handles

Overlapping
clusters

3D clusters Commonly used
homogeneity function on
their cluster (O, A)

Subspace clustering CO, D, CA,
WD, B

√ √
Similar attribute values in

submatrix O × A

Projected clustering CO, D, CA,
WD, B

Similar attribute values in
submatrix O × A

Maximal bicliques CA, B
√ √

Same attribute values in
submatrix O × A

Frequent patterns D, CA, B
√ √

Same attribute values in
submatrix O × A

Pattern based
clustering

CO, D, WD
√ √

Attribute values expressed in
simple linear relation, in
submatrix O × A

Correlation clustering CO, D, WD
√

Attribute values expressed in
complex linear relation, in
submatrix O × A

Co-clustering CO, D, WD, B Attribute values with similar
probabilities or
co-occurrences, in
submatrix O × A

CO, D, CA, WD and B denote continuous, discrete, categorical, word-document and binary respectively

4 Basic subspace clustering: approaches and their definitions

The approaches to solving the basic subspace clustering problem have three main
characteristics. First, they handle quantitative 2D dataset. Second, their homogeneous
function is distance based. Third, the significance of the size is determined by user-
specified thresholds. Their main difference lies in their homogeneous and support
functions. Figure 5a shows an example of objects on the hyperplane of subspace
{a1, a2}, and Fig. 5b–c show the subspace clusters mined by the different approaches.
Note that the subspace clusters C = (O, A) are submatrices O × A that are axis-
parallel to the dataset, and not to the hyperplane of the subspace.

4.1 Grid based subspace clustering

In grid based subspace clustering (Agrawal et al. 1998), the data space is partitioned
into grids, and dense grids containing significant number of objects are used to form
subspace clusters.

The domain of each attribute a, D(a), is first partitioned into ξ intervals, ua
1, . . . , ua

ξ ,

each of equal length Ra
ξ

. Given a set of attributes A, we denote u = {ua |a ∈ A} as
an |A|-attribute unit, which is the combination of one interval from each attribute of
A. Two |A|-attribute units u = {ua |a ∈ A}, v = {va |a ∈ A} have common face if (1)
∀i ∈ {1, . . . , |A| − 1} : ui = vi and (2) u|A| and v|A| are contiguous. Two units u,
v are connected if they have common face or if there exists another unit w such that
there is a common face between u and w, and w and v.
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Fig. 5 a Objects in the hyperplane of subspace {a1, a2}, b grid based subspace clusters, c window based
subspace clusters, and d density based subspace clusters

Definition 6 (Grid based subspace cluster) Given a matrix O × A, we denote
U = {u1, . . . un} as the set of connected |A|-attribute units contained in matrix O × A.
C = (O, A) is a subspace cluster if

– h(C) = ∀u ∈ U : ∀ua ∈ u : |xoa − xo′a | ≤ Ra
ξ

for any xoa, xo′a ∈ ua

– π(C) = ∀u ∈ U : |{o|∀ua∈u:xoa∈ua∧o∈O|
|O| ≥ τ

Figure 5b shows an example of the result of grid based subspace clustering, with
each cell in the grid as a unit. In this example, the unit is considered dense if it has at
least 5 objects.

Properties of the clusters:

– Homogeneity The intervals in the units induced the homogeneity of the cluster,
given that the maximum distance between objects in an interval is Ra

ξ
. There are

some weaknesses in using intervals. First, as the intervals are non-overlapping,
and wrong positioning of the grids may lead to ‘truth’ subspace clusters being
overlooked. Second, setting a fixed size on the intervals using ξ may result in poor
clustering quality, as the distribution of the objects in each attribute is different.
Nagesh et al. (2001) proposed using adaptive grids to overcome this problem,
which varies the interval sizes based on the data distribution. Figure 5b shows a
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subspace cluster in the region a1 = 4, a2 = 1 being overlooked due to the poor
positioning of the grid.

– Size The support function requires the units to be dense, where the density is
specified by the density threshold τ . Setting a fixed τ may degrade the clustering
quality, as a high threshold leads to a small number of subspace clusters, while
a low threshold leads to a large number of clusters. To circumvent this prob-
lem, Sequeira and Zaki (2004) proposed a non-linear monotonically decreasing
threshold which decreases as the size of the subspace increases.

– Number of parameters There are two tuning parameters to set, the density
threshold τ and the number of intervals ξ .

– Parameter sensitivity The cluster is sensitive to the tuning parameters. If wrong
τ and ξ are set, actual dense units may be overlooked. For example, the subspace
cluster in the region a1 = 4, a2 = 1 can be overlooked due to wrong parame-
ter settings. The parameters are difficult to set as they are non-meaningful and
non-intuitive.
A possible remedy is to try a range of parameter settings, and check for results
which are stable in a particular range of parameter settings. Another possible
option is to adjust the parameter setting until a suitable number of clusters is
obtained.

4.2 Window based subspace clustering

Window based subspace clustering (Liu et al. 2009) is developed primary to over-
come the weaknesses of grid based subspace clustering. In window based subspace
clustering, a sliding window is slided over the domain of each attribute to obtain over-
lapping intervals, which are then used as building blocks for subspace cluster. Thus,
the chances of ‘true’ subspace clusters being overlooked are greatly reduced.

Definition 7 (Window based subspace cluster) C = (O, A) is a subspace cluster if

– h(C) = ∀a ∈ A: |xoa − xo′a | ≤ Ra .δ, for any pair of objects o, o′ ∈ O .
– π(C) = |O| ≥ mino ∧ |A| ≥ mina

If the values are normalized to [0, 1], then the homogeneous function is simply
|xoa − xo′a | ≤ δ.

Properties of the clusters:

– Homogeneity The homogeneity of the cluster is based on L∞ norm, i.e. the
distance between two objects in the cluster is dependent on the attribute a ∈ A
which gives the largest distance between them. Parameter δ determines the size
of the sliding window, which controls the distance between objects in the cluster.

– Size The size of the cluster is determined by the parameters mino and mina .
– Number of parameters There are three tuning parameters mino, mina and δ to

set.
– Parameter sensitivity The cluster is sensitive to the tuning parameters.

Figure 5c shows an example of the result of window based subspace clustering.
Unlike density based subspace cluster, window based subspace clustering does not
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mine arbitrarily shaped clusters, hence it does have the problem of mining undesirable
elongated clusters. Details of density based subspace clustering is explained in the
next section.

4.3 Density based subspace clustering

Kailing et al. (2004) proposed density based subspace clustering, which overcomes
the problems of grid based subspace clustering by dropping the usage of grids. More-
over, it is able to mine arbitrarily shaped subspace clusters in the hyperplane of the
dataset.

Let ||o − o′||A
p = (

∑
a∈A |xoa − xo′a |p)

1
p be the distance between objects o and o′

in L p-norm, projected on the subspace A. We denote the neighborhood of object o on
subspace A as N A

ε (o) = {o′|o′ ∈ O, ||o − o′||A
p ≤ ε}, where ε controls the closeness

of the objects on subspace A.

Definition 8 (Density based subspace cluster) C = (O, A) is a subspace cluster if

– h(C) = ∀o, o′ ∈ O : ∃k : ∀i = 1, . . . , k − 1 : ∃qi ∈ O : ‖qi − qi+1‖A
p ≤

ε ∧ q1 = o, qk = o′ ∧ ∀qi (i = 2, . . . , k − 1) : |N A
ε (qi )| ≥ m

– π(C) = ∀o ∈ O : |N A
ε (o)| ≥ m ∨ (o ∈ N A

ε (q) ∧ |N A
ε (q)| ≥ m)

Properties of the clusters:

– Homogeneity The cluster can be seen as a chain of objects, as the homogeneity
function h(C) states that two objects are in a cluster in subspace A, if there is a
chain of objects between them, such that each closest pair of objects qi , qi+1 (these
objects are also in the cluster) satisfy the distance constraint. Hence, arbitrarily
shaped clusters can be found.
The calculation of the distance between objects is in L p-norm, and more mean-
ingful and stable results can be obtained by setting a low p (Hinneburg et al. 2000;
Aggarwal et al. 2001).
Due to the curse of dimensionality, the distance between the objects in the sub-
space A increases as the size of A increases. This is a common problem that also
affects grid and window based subspace clustering, but more research on mitigat-
ing this problem is done in density based subspace clustering (Assent et al. 2007;
Achtert et al. 2007; Kriegel et al. 2005).
Algorithm DUSC (Assent et al. 2007) mitigates this problem by using a density
measure that is adaptive to the size of A, but it does not have monotonic properties
for efficient pruning of the search space. Algorithms DiSH (Achtert et al. 2007)
and FIRES (Kriegel et al. 2005) mitigate this problem by calculating the distance
between objects in each attribute of the subspace A, i.e. ∀a ∈ A : ||o − o′||ap,
instead of the whole subspace A. Thus, their main algorithmic effort is in com-
bining clusters found in single interesting attributes.

– Size The size of the cluster is determined by the parameter m, where m controls
the neighborhood density of an object on subspace A. It is important to set m > 1,
so that the cluster is a m-link cluster, instead of the undesirable single-link cluster.

– Number of parameters There are two tuning parameters m and ε to set.
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– Parameter sensitivity The cluster is sensitive to the tuning parameters.

Figure 5d shows an example of the result of density based subspace clustering.

5 Enhanced subspace clustering: approaches and their definitions

We present the existing approaches to solve the enhanced subspace clustering problems
described in Sect. 2.3, and their cluster definitions.

Note that we do not dedicate a section on overcoming parameter-sensitive subspace
clustering. Instead, we discuss the approaches to overcome parameter-sensitive prob-
lem in the other enhanced subspace clustering sections, as the main contributions of
these approaches lie in solving other enhanced subspace clustering problems.

5.1 Handling complex data

5.1.1 3D data

Subspace clustering in binary 3D dataset In binary 3D dataset, the values xoat are
binary, either ‘0’ or ‘1’, i.e. D = O × A × T ∈ {0, 1}|O|×|A|×|T|.

The most common definition of binary 3D subspace cluster is as follows:

Definition 9 (Binary 3D subspace cluster) C = (O, A, T ) is a subspace cluster if

– h(C) :=
∑

xoat ∈C xoat

|O|.|A|.|T | = 1
– π(C) := |O| ≥ mino ∧ |A| ≥ mina ∧ |T | ≥ mint

Properties of the clusters:

– Homogeneity The binary 3D subspace cluster is a sub-cuboid C = O × A × T
which contains all ‘1’s. This means that the set of objects O have the set of attri-
butes A, across the set of timestamps T . This definition is also known as frequent
closed cube (Ji et al. 2006), closed 3-set (Cerf et al. 2008, 2009), frequent tri-sets
(Jaschke et al. 2006) and cross-graph quasi-biclique subgraphs (Sim et al. 2011).

– Size Three parameters mino, mina and mint are used to determine the size of a
cluster.

– Number of parameters There are three tuning parameters to set, mino, mina and
mint .

– Parameter sensitivity The cluster is sensitive to the tuning parameters.
– Concept of subspace in the time dimension Concept of subspace exists in the

time dimension.

Cerf et al. (2008) proposed closed n-sets, which are n-dimensional binary subspace
clusters, but we focus our attention to closed 3-sets, since 3D datasets are more com-
mon in the real world. Cross-graph quasi-biclique subgraphs are noise-tolerant 3D
subspace clusters, and its details are in Sect. 5.1.4.

Let us assume that the values in the dataset are not binary, but are association
weights in the range [0, 1], i.e. xoat is the weight of the object o on attribute value a at
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time t . Georgii et al. (2010) proposed mining 3D subspace clusters from this type of
dataset. The clusters are based on density but the desired clusters are still sub-cuboids
C = O × A × T containing all ‘1’s.

Definition 10 (Dense 3D subspace cluster) C = (O, A, T ) is a subspace cluster if

– h(C) :=
∑

xoat ∈C xoat

|O|.|A|.|T | ≥ θ

– π(C) := |O| > 1 ∨ |A| > 1 ∨ |T | > 1

Properties of the clusters:

– Homogeneity The homogeneity is density based and θ is the parameter control-
ling the density of the cluster. Setting θ = 1 will lead to the same homogeneous
function of Definition 9.

– Size There is no requirement of the size, but the set of objects, attributes or
timestamps should not be singleton.

– Number of parameters Only one tuning parameter is needed, θ .
– Parameter sensitivity The cluster is sensitive to the tuning parameter θ .
– Concept of subspace in the time dimension Concept of subspace exists in the

time dimension.

Similar to closed n-sets (Cerf et al. 2008), the approach proposed by Georgii et al
can mine dense n-dimensional subspace clusters.

Subspace clustering in quantitative 3D dataset Subspace clustering in quan-
titative 3D dataset is more complex than in binary 3D dataset, as the homogeneity of
the clusters is not just a matter of ‘0’s and ‘1’s.

A simple solution is proposed by Sim et al. (2011), in which the values are dis-
cretized and converted into binary dataset, and then 3D binary subspace clusters are
mined from it. However, this lossy conversion of data has several weaknesses. Select-
ing the appropriate discretization method is non-trivial, and information may be lost
during the discretization. Moreover, the binary dataset may increase exponentially if
the discretization is too fine, as each attribute of the binary dataset corresponds to an
interval of the discretized attribute values of the original dataset.

Jiang et al. (2004a) mine 3D subspace clusters, known as coherent gene clusters,
directly from quantitative 3D dataset, but they ‘flatten’ the 3D dataset into 2D, which
results in having the strict requirement that the clusters must be persistent in every
timestamp of the dataset.

Let xoa = ∑
t∈T

xoat|T| be the average value of object o on attribute a, over time T.

Definition 11 (Coherent gene cluster) C = (O, A, T) is a subspace cluster iff

– h(C) :=
∑

t∈T
(xoat −xoa)(xoa′t −xoa′ )√∑

t∈T
(xoat −xoa)2

√∑
t∈T

(xoa′t −xoa′ )2
≥ δ, for any a, a′ ∈ A

– π(C) := |O| ≥ mino ∧ |A| ≥ mina

Properties of the clusters:

– Homogeneity The homogeneous function is Pearson’s correlation coefficient
(Yang et al. 2002). In the coherent gene cluster, the values of its objects O are
linearly correlated across time in its subspace A. However, there is no requirement
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that the values must be closed together on its subspace A. Thus, coherent gene
cluster is more related to pattern based cluster than subspace cluster. Both scal-
ing and shifting patterns (explained in Sect. 3.4) can be captured under Pearson’s
correlation coefficient.

– Size The size of the cluster is determined by the parameters mino and mina .
– Number of parameters There are three parameters to set tuning mino, mina and

δ. Parameter δ controls the strictness of the correlation of the cluster across time.
– Parameter sensitivity The cluster is sensitive to the tuning parameters.
– Concept of subspace in the time dimension There is no concept of subspace

in the time dimension. The cluster must be persistent in every timestamp of the
dataset, which can be too strict. It is also unlikely to mine any clusters when the
time dimension is large. Coherent gene cluster is more suitable for datasets that
have small number of timestamps.

Sim et al. (2010b) proposed semi-supervised, quantitative 3D subspace cluster
which also requires the cluster to be persistent across time in the dataset. Its details is
discussed in Sect. 5.2.2.

Zhao and Zaki (2005) proposed triclusters, which is a variant of window based
subspace cluster. Unlike the coherent gene cluster, it does not ‘flatten’ the 3D dataset
into 2D and the concept of subspace exists in the time dimension. Tricluster is a highly
flexible cluster model that can be morphed into a wide variety of 3D subspace clus-
ters, such as clusters that have similar values, clusters that exhibit shifting or scaling
patterns, etc. To this end, the homogeneous function of the window based subspace
cluster is extended to the object and time dimension, and the pScore (Definition 5) is
used to detect the shifting or scaling patterns.

Let M be an arbitrary 2 × 2 submatrix

[
a b
c d

]
of a 3D subspace cluster C =

(O, A, T ), i.e. M ⊆ O × A for some t ∈ T, M ⊆ O × T for some a ∈ A or
M ⊆ A × T for some o ∈ O .

Definition 12 (Tricluster) C = (O, A, T ) is a subspace cluster if

– h(C) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1. ∀xoat , xo′a′t ′ ∈ C : |xoat − xo′a′t ′ | ≤ δ

where δ =
⎧⎨
⎩

δo if a = a′ ∧ t = t ′
δa if o = o′ ∧ t = t ′
δt if o = o′ ∧ a = a′

2. For any M of C : pScore(M) ≤ ε

– π(C) := |O| ≥ mino ∧ |A| ≥ mina ∧ |T | ≥ mint

Properties of the clusters:

– Homogeneity The first criterion of the homogeneous function controls the sim-
ilarities of the values in triclusters. It is similar to the homogeneous function of
window based subspace cluster, except that it is extended to both attribute and time
dimensions. The second criterion of the homogeneous function checks if shifting
or scaling patterns exist in the triclusters, which is based on pScore (Definition
5), a common criterion used in pattern based clusters. Thus, tricluster is a hybrid
of subspace and pattern based clusters.
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– Size The size of the cluster is determined by the parameters mino, mina and
mint .

– Number of parameters The flexibility of tricluster comes at a cost. The user is
required to set 7 tuning parameters δo, δa, δt , ε, mino, mina, mint , which can be
burdensome. Tweaking them to define the cluster of interest requires some effort
and the details are given in (Zhao and Zaki 2005). For example, if δo ≈ 0, δa ≈
0, δt �= 0, ε ≈ 0, then for each timestamp t of a tricluster, the submatrix O × A in
timestamp t has similar values, but the values display shifting or scaling patterns
across time in T .

– Parameter sensitivity The cluster is sensitive to the tuning parameters.
– Concept of subspace in the time dimension Concept of subspace exists in the

time dimension.

Sim et al. (2010a) proposed quantitative 3D subspace clusters which are significant
and parameter-insensitive, and the details are given in Sect. 5.2.1.

There are 3D clusters that are related to 3D subspace clusters. Xu et al. (2009)
proposed mining S2 D3 clusters, which are variations of triclusters, but they are not
axis-parallel. Zhang and Wang (2007) proposed mining F-clusters, which are sets of
2D subspace clusters. More specifically, a F-cluster is a set of 2D subspace clusters
{(O, At )|t ∈ T }, where At is the set of attributes at time t , and each 2D subspace clus-
ter (O, At ) satisfies the pScore criterion. The set of objects O is fixed in a F-cluster,
but the set of attributes can change across time.

5.1.2 Categorical data

Zaki et al. (2005) proposed mining subspace clusters in categorical dataset, where the
occurrences of their values are higher than expected, under the assumption that the
attributes are independent and uniformly distributed.

Let V be a set of values, and occ(V ) be the set of objects containing V , i.e. occ(V ) =
{o|∀xa ∈ V : xoa = xa}. Under the assumption that the attributes are independent and
uniformly distributed, we can calculate the expected size of occ(V ) as E[|occ(V )|] =
|O| ∏xa∈V

1
|D(a)| . For example, if the dataset contains 10 objects and has a categori-

cal attribute gender with value male, f emale, then the expected number of objects
containing the value male is E[|occ({male})|] = 10. 1

2 = 5. For a subspace cluster
C = (O, A), we can calculate the expected number of objects on the subspace A as
E[|O|] = |O|∏a∈A

|DO (a)|
|D(a)| .

Definition 13 (Categorical subspace cluster) C = (O, A) is a subspace cluster if

– h(C) := ∀a ∈ A : ∀o ∈ O : xoa = xa

– π(C) :=
⎧⎨
⎩

1. |O| ≥ αE[|O|]
2. ∀a, a′ ∈ A : ∀o ∈ O : |occ(V )| ≥ αE[|occ(V )|],

such that V = {xoa, xoa′ }
Properties of the clusters:

– Homogeneity The set of objects O have the same value for each attribute a ∈ A.
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– Size Under the assumption that the attributes are independent and uniformly dis-
tributed, the first criterion of the support function requires the number of objects
in the cluster to be more than the expected number, while the second criterion
requires that the occurrences of each pair of values in the cluster are more than
the expected number. The assumption of the attribute being independent and uni-
formly distributed can be too rigid, as it is possible that the attributes are dependent
and the dataset may not be uniformly distributed.

– Number of parameters Only one tuning parameter α is needed, which controls
the density of the cluster.

– Parameter sensitivity The cluster is sensitive to the tuning parameter.

Müller et al. (2009c) also adopted the concept of Definition 13 and used it in density
based subspace clustering on heterogeneous dataset, which contains categorical and
quantitative attributes.

5.1.3 Stream data

Subspace α-clustering (Kontaki et al. 2008) handles stream data which has a fixed
number of objects with streaming attributes. The cluster is defined as follows:

Definition 14 (Subspace α-cluster) C = (O, A) is a subspace cluster if

– h(C) := ∀o, o′ ∈ O,∀a ∈ A : |xoa − xo′a | ≤ α

– π(C) := |O| ≥ mino ∧ |A| ≥ mina

Properties of the clusters:

– Homogeneity The homogeneity of subspace α-cluster is similar to window
based subspace cluster (Definition 7), except that subspace α-cluster requires the
attributes in A to be consecutive in their timestamps.

– Size The size of the cluster is determined by the parameters mino and mina .
– Number of parameters Three tuning parameters are required, mino, mina and

α. Parameter α controls the differences allowed in the values of an attribute at a
timestamp.

– Parameter sensitivity The cluster is sensitive to the tuning parameters.

There are several high-dimensional clustering techniques for stream data. In pattern
based clustering, Zhang et al proposed mining δ-CC-Clusters (Zhang et al. 2007) from
stream data that contains fixed set of objects but with streaming attributes. δ-CC-Clus-
ter is based on pCluster (Wang et al. 2002), where their homogeneity function is shown
in Definition 5. Aggarwal et al. (2004) proposed mining projected clusters from stream
data that contains streaming objects with fixed set of attributes. Likewise, Kriegel et al.
(2011) proposed mining projected clusters from dynamic data. Dynamic data is sim-
ilar to stream data that contains streaming objects with fixed set of attributes, except
that the objects can be continuously inserted, updated or deleted.

In general, the cluster definitions of stream data clustering are usually inherited from
its peers in static-data clustering, but the algorithms have to be overhauled to accom-
modate the potentially infinite stream data. The algorithms are generally required to
read the data once and the clustering is usually within a fixed window of the data.
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(a) (b)

Fig. 6 a A quantitative (discrete or continuous) dataset with the shaded cells as a noise tolerant subspace
cluster. b The bipartite graph of the quantitative dataset, where the values of the attributes are discretized into
intervals. Each vertex represents an interval. The encircled vertex sets represent a quasi-biclique subgraph
which corresponds to the subspace cluster of Fig. 6a

The current stream mining paradigm assumes that the data is of 2D matrix O × A,
with either the objects O or the attributes A being streaming. With the advancement of
data collection, it is possible to have stream data in the form of 3D matrix O × A × T ,
where time T is being streamed.

5.1.4 Noisy data

Three diverse approaches have been proposed to handle noisy data, with the graph and
Bayesian based approaches handling noisy data represented in the standard matrix for-
mat, and the probability based approach handling noisy data represented in uncertain
data format.

The noise tolerance concept of the graph based approach is simpler than the others,
as it simply ‘relaxes’ the clustering criteria, by allowing some objects that do not satisfy
the clustering criteria to be included in the cluster. On the other hand, the probability
and Bayesian based approaches are more sophisticated approaches that use the data
distribution to infer if there is noise in the clusters.

Graph based approach As explained in Sect. 3.3, a binary dataset can be rep-
resented as a bipartite graph and biclique subgraphs mined from it correspond to
subspace clusters. A biclique subgraph does not tolerate noise, as it requires an edge
to exist for all pairs of vertices in the subgraph. To tolerate noise, quasi-biclique sub-
graphs are introduced, where some edges are allowed to be missing in the subgraphs
(Li et al. 2008; Sim et al. 2006, 2009b; Mishra et al. 2005; Sim et al. 2011).

For quantitative (discrete or continuous) dataset, discretization is performed first
before it is converted into a bipartite graph (Sim et al. 2006, 2009b, 2011). This lossy
conversion of data has several weaknesses, as explained in Sect. 5.1.1.

Figure 6a shows an example of a quantitative dataset being discretized and rep-
resented as a graph in Fig. 6b. The vertices on the right side of the bipartite graph
represent intervals of the discretized attribute values, and there is an edge between an
object and an interval, if attribute value of the object falls in the interval. The encircled
vertex sets in Fig. 6b is a quasi-biclique subgraph which corresponds to the noise
tolerant subspace cluster shown in Fig. 6a.

123



360 K. Sim et al.

There are several variations of quasi-biclique subgraphs, and their main difference
is in their criteria on the missing edges, which can be characterized into two cate-
gories: (1) if there is restriction on the number of missing edges on each vertex, and
(2) if the number of missing edges allowed is absolute or relative to the size of the
quasi-biclique subgraph.

For the first category, restriction on the number of missing edges on each vertex in
the quasi-biclique subgraph prevents skewed subgraphs to be mined. A subgraph is
skewed when its distribution of missing edges is skewed, and vertices that have very
low connectivities in the subgraph may be noise. (Sim et al. 2006, 2009b; Li et al.
2008) have this restriction, while (Mishra et al. 2005; Yan et al. 2005) do not have this
restriction.

For the second category, (Sim et al. 2006, 2009b) allow an absolute number of
missing edges in a quasi-biclique subgraph, while (Li et al. 2008; Mishra et al. 2005;
Yan et al. 2005) allow a relative number of missing edges with respect to the size of
the subgraph. Relative tolerance allows the number of missing edges to increase as
the size of the cluster increases. Thus, relative tolerance is more natural than abso-
lute tolerance, where the allowed number of missing edges is fixed regardless of the
size of the cluster. However, efficient algorithms can be developed to mine subgraphs
using absolute tolerance due to its anti-monotone property (Sim et al. 2006), which
subgraphs using relative tolerance do not have.

The definition of a quasi-biclique which restricts the number of missing edges on
each vertex in the subgraph, and has absolute number of missing edges in the subgraph,
is presented as follows:

Definition 15 (Quasi-biclique) C = (O, A) is a quasi-biclique if

– h(C) :=
{∀o ∈ O : |A| − |{{o, a}|a ∈ A}| ≤ ε

∀a ∈ A : |O| − |{{o, a}|o ∈ O}| ≤ ε

– π(C) := |O| ≥ mino ∧ |A| ≥ mina

Properties of the clusters:

– Homogeneity Most of the objects in a cluster have similar values in their subspace.
The similarity is based on the discretization technique used on the data.

– Size The size of the cluster is determined by the parameters mino and mina .
– Tolerate noisy data By tolerating missing edges in the quasi-biclique subgraph,

some objects that do not satisfy the clustering criteria are allowed to be in the
subspace cluster. This is based on the assumption that the values of these objects
fail to satisfy the clustering criteria due to noise.

– Number of parameters Three tuning parameters are needed, mino, mina for the
size of the cluster and ε for the tolerance of the missing edges.

– Parameter sensitivity The cluster is sensitive to the tuning parameters. An expo-
nential number of quasi-biclique subgraphs may be mined, if the tolerance of
missing edges is extremely relaxed. Hence, the user has to set an appropriate ε

with respect to the parameters mino, mina .

Quasi-biclique is extended to the time dimension in (Sim et al. 2011) and is known as
cross-graph quasi-biclique. Thus, noise-tolerant 3D subspace clusters can be obtained
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by mining cross-graph quasi-biclique subgraphs. C = (O, A, T ) is a cross-graph
quasi-biclique subgraph if ∀t ∈ T : (Ot , At ) is a quasi-biclique and |T | ≥ mint .

Bayesian based approach The Bayesian based approach assumes the data is
modeled by multivariate distributions, and uses them to infer if a value in the dataset
belongs to any subspace cluster (Fu and Banerjee 2009). Hence, this approach is robust
against noise, if the assumption holds.

The dataset is presented in the form of a matrix D = O × A, and the number of
subspace clusters, k, is assumed to be known. Each row o ∈ O and column a ∈ A have
k-dimensional latent bit vectors zo and za respectively, which indicate their subspace
cluster memberships. The subspace cluster membership for a value xoa is obtained
by an element-wise product of the corresponding row and column bit vectors, i.e.
z = zo � za .

Definition 16 (Bayesian overlapping subspace cluster) ∀i ∈ {1, . . . , k} : Ci =
(Oi , Ai ) is a subspace cluster if

– ∀o ∈ Oi , a ∈ Ai : zi = 1, given that zi is the i th entry of the membership vector
z and z = zo � za .

Bayesian overlapping subspace clusters are different from other subspace clusters,
as homogeneity and support functions are not used to define the clusters.

The matrix D is assumed to be generated by k + 1 exponential families, each with
parametric distribution p(.|θi ), i ∈ {1, . . . , k + 1}. Each of the first k exponential
family models a subspace cluster Ci , and the (k + 1)th exponential family models the
noise in the matrix.

Each value xoa ∈ D is assumed to be generated by some exponential families, which
are picked based on the membership vector of the value, z = zo � za . For example, if
z1 = z3 = 1, then xoa is generated by the first and third exponential families. Thus,
xoa is assumed to be generated by a multiplicative mixture model as follows:

xoa ∼
{ 1

c(zo�za)

∏k
i=1 p(xoa |θi , zo

i , za
i ) if zo � za �= 0

p(xoa |θk+1) otherwise
(2)

where c(.) is a normalization factor to guarantee that p(.|θi , zo
i , za

i ) is a valid distri-
bution. If xoa does not belong to any cluster membership, then it is assumed to be
generated from the noise component p(.|θk+1).

The latent bit vector zo for each row and latent bit vector za for each column are
obtained by the following generative process:

For each cluster Ci

1. For each row o ∈ O

(a) sample πo
i ∼ Beta(α

O

i , β
O

i )

(b) sample zo
i ∼ Bernoulli(πo

i )

2. For each column a ∈ A

(a) sample πa
i ∼ Beta(αA

i , βA

i )

(b) sample za
i ∼ Bernoulli(πa

i )
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Fu and Banerjee (2009) assume that the latent bit vectors are Beta-Bernoulli dis-
tributed. Thus, the problem of mining subspace clusters is transformed into a problem
of estimating the parameters of the Beta-Bernoulli and exponential families. Using the
matrix D, the parameters of the Beta-Bernoulli distribution α

O

i , β
O

i , αA

i , βA

i , πo
i , πa

i
and exponential families θi are estimated using an EM-like algorithm.

Properties of the clusters:

– Homogeneity and size Both the homogeneity and size of the cluster is determined
by the assumed distributions of the data.

– Tolerate noisy data By assuming that the data is generated by statistical distri-
butions, we are able to infer if the values in the matrix D are noisy.

– Number of parameters There are parameters α
O

i , β
O

i , αA

i , βA

i , πo
i , πa

i , θi , which
describe the data distribution of each subspace cluster Ci .

– Parameter sensitivity Parameter sensitivity is not an issue, as the parameters of
the model are estimated and not set by the user.

Probability based approach An uncertain object oi is represented by a pdf poi ,
which can be sampled by a set of vectors. For example, the uncertain object oi can
be a sensor, and the set of vectors is a set of readings, each taken at a different time
interval.

Günnemann et al. (2010c) proposed a probability based approach to handle uncer-
tain data. A subspace cluster is considered robust in uncertain data, if (1) its number
of objects (support) exceeds a threshold, and (2) for each of its objects, the probability
that the object is close to its medoid on the subspace is high.

Let vector x = (x1, . . . , x|A|) ∈ R
|A| be a point in the hyperspace defined by the

set of attributes A. Given a subset of attributes (subspace) A, the distance between two
vectors x, x′ on subspace A is calculated in L∞ norm, i.e. d A∞(x, x′) = max

a∈A
{|xa −x ′

a |}.
Let pA

oi
be the pdf of uncertain object oi in subspace A, which is obtained by

marginalizing over the attributes {|A| + 1, . . . , |A|}.

pA
oi

(x) = pA
oi

(x1, . . . , x|A|) =
∫

x|A|+1

. . .

∫
x|A|

po(x1, . . . , x|A|) (3)

On subspace A, the probability that the distance between uncertain object oi and
medoid m is less than ω is calculated as

P≤ω(oi , m, A) =
∫

x, x′ ∈ R
|S|

d A∞(x, x′) ≤ ω

pA
oi

(x).pA
m(x′) dx dx′

(4)

This probability is obtained by integrating over all possible pairs of vectors whose
distances are less than ω on subspace A, and as oi and m are assumed to be independent,
the joint pdf of them is the product of both individual pdf.

Definition 17 (Subspace cluster for uncertain data) Given a medoid m, C = (O, A)

is a subspace cluster if

– h(C) := ∀o ∈ O : P≤w(o, m, A) ≥ εprob
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– π(C) :=
∑
o ∈ O

P≤w(o, m, A) ≥ εprob

P≤w(o, m, A) ≥ minSup

Properties of the clusters:

– Homogeneity The homogeneity function is based on Eq. 4, which clusters objects
that have high probability of being closed to the medoid m on subspace A.

– Size The support function of the cluster is the sum of the probabilities of the
objects being closed to the medoid. Hence, a cluster with a large number of objects
may not be valid if its sum of probabilities is low.

– Account the uncertainty of the data The uncertainty of the data is accounted
when the pdf of the uncertain objects are used in the clustering, which is more
accurate than using the deterministic values of the objects. However, in order to
use the pdf, the distribution of the objects is assumed to be known.

– Number of parameters Three tuning parameters are required; the maximum
distance allowed between vectors ω, the minimum probability of two uncer-
tain objects being closed together εprob, and the minimum support of the cluster
minSup, which is based on probability.

– Parameter sensitivity The cluster is sensitive to the tuning parameters.

5.2 Improving clustering results

5.2.1 Significant subspace clustering

There are two approaches to mine significant subspace clusters. The first approach
is to mine significant subspaces, and then mine basic subspace clusters from them.
Finding significant subspaces can be seen as a pre-processing step, and it is similar to
the filter model of attribute selection (Dash et al. 2002), except that the filter model
only finds one subspace based on the whole set of objects. Finding only one subspace
contradicts the concept of subspace clustering, where objects can be homogeneous in
different subspaces.

The second approach is to define significant subspace clusters and mine them
directly. This is different from the first approach, where basic subspace clusters are
mined, but they are mined from significant subspaces.

Entropy based subspaces Cheng et al. (1999) proposed mining basic subspace
clusters from significant subspaces, to prevent an exponential number of clusters being
generated.

Let A be the subspace in consideration. By treating each attribute a ∈ A as a random
variable, the entropy of A can be calculated as H(a1, . . . , a|A|). Cheng et al. (1999)
also measure the correlation of the attributes in A by the following equation:

interest (A) =
∑
a∈A

H(a) − H(a1, . . . , a|A|) (5)
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If the attributes are independent of each other, then the first term equates to the
second term, resulting in interest (A) = 0. Hence correlated attributes will have high
interest score.

Cheng et al. (1999) define a subspace A to be significant when the entropy of A is
below ω and the interest of A is above ε.

A similar approach was proposed by Hsu and Chen (2004), but they only measure
the entropy of each attribute and prune an attribute if its entropy is above a user-spec-
ified threshold.

Cheng et al. (1999) also proposed interesting subspaces. A subspace A is interesting
when the entropy of A is below ω and the interest gain of A is above ε. Interest gain
is defined as

interest_gain(A) = interest (A) − max
a∈A

{interest (A − {a})} (6)

In another words, a subspace is deemed interesting if additional attribute leads to a
significant increase of interest (A).

Property of the subspace:

– Significant subspace Cheng et al observed that a subspace with clusters typically
has lower entropy than a subspace without clusters. The entropy of the subspace
is the highest when the objects in the subspace are uniformly distributed. This is
so, as under uniform distribution, the uncertainty of an object’s location on the
subspace is the highest, compared to other distributions. Whereas if the objects in
the subspace are closely packed in a cluster, the entropy of the subspace is low as
we are certain that an object would likely to be in the cluster.

– Minimal subspaces Contrary to other approaches, Cheng et al mine minimal
subspaces instead of maximal subspaces, i.e. if A and A′ are significant subspaces
and A ⊂ A′, then only A is outputted. They argue that clusters from minimal sub-
space are easier to interpret and mining minimal subspaces is faster than mining
maximal subspaces.

– Number of parameters There are two tuning parameters to set, ω and ε, which
control the significance of the subspaces.

– Parameter sensitivity The cluster is sensitive to the tuning parameters.

Interesting subspaces Kailing et al. (2003) proposed a density based approach
to find interesting subspaces, and basic subspace clusters are then mined from these
subspaces. To measure the closeness of the objects on a subspace A,N A

ε (o) (described
in Sect. 4.3) is used to calculate the ε-neighborhood of an object o on subspace A.
We denote object o as a core-object of subspace A if |N A

ε (o)| ≥ m. We also denote
core[A] as the number of core-objects in subspace A, and count[A] as the sum of all
objects in the neighborhoods of all core-objects in subspace A.

A naïve way is to simply use count[A] to determine the interestingness of the sub-
space A, but this will favor small subspaces, as large subspace has lower count[A] due
to N A

ε (o) being affected by the curse of dimensionality. Hence, Kailing et al proposed
to normalize count[A] by the hyperplane of the ε-neighborhood in subspace A, which
is expressed as:
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Quali t y(A) = count[A]
|O|2.V ol |A|

ε

(7)

The domain of each attribute a ∈ A is normalized from [0, 1]. If L∞-norm is used,
then V ol |A|

ε is a hypercube and can be computed as V ol |A|
ε = (2ε)|A|. If L2-norm is

used, then V ol |A|
ε is a hypersphere and can be computed as V ol |A|

ε =
√

π |A|
Γ (|A|/2+1)

.ε|A|,
where Γ (x + 1) = x · Γ (x), Γ (1) = 1 and Γ ( 1

2 ) = √
π .

All subspaces A that satisfy parameters ε and m will be outputted and ranked in
descending order of Quali t y(A). Its algorithm is discussed in Sect. 6.1.

Property of the subspace:

– Significant subspace The subspace is considered significant when the number
of objects closed together is high with respect to the volume of the subspace.

– Number of parameters The tuning parameters required are used in the density
based subspace clustering (Definition 8). There are two parameters to set; m con-
trols the neighborhood density of an object on subspace A and ε controls the
closeness of the objects on subspace A.

– Parameter sensitivity The subspace is sensitive to the tuning parameters.

High quality but minimal overlapping subspace clusters The relevance model
(Müller et al. 2009a) and orthogonal model (Günnemann et al. 2009) have been pro-
posed to mine high quality but minimal overlapping subspace clusters. The main
difference between these two models is the way they reduce the overlapping clusters.
In the relevance model, the subspace clusters have minimal overlapping in their sets
of objects. In the orthogonal model, only subspace clusters whose sets of attributes
are similar have minimal overlapping in their sets of objects.

Generally, subspace clusters are based on local information and they do not account
the ‘global’ information of the dataset, i.e. C = (O, A) is a subspace cluster because
the set of objects O is homogeneous in the set of attributes A. Both relevance and
orthogonal models take into account both the local and global information. In addi-
tion, both models are highly flexible as they can be used for any definitions of subspace
clusters.

Relevance model Let us assume that we have fixed the type of subspace clusters
to mine, and let M = {C1, . . . , Cn} = {(O1, A1), . . . , (On, An)} ⊆ AL L be a set of
subspace clusters. We denote Cov(M) = ∪n

i=1 Oi as the union of the objects in the set
of clusters M . We also denote k(C) as the cost function of cluster C , which measures
the ‘interestingness’ of the cluster, and low cost k(C) implies that the cluster is highly
interesting. The cost function is subjected to the user’s definition, which for example,
can simply be the number of objects in the cluster or the density of the cluster.

The function cluster gain is proposed to measure the significance of a cluster
C = (O, A), which is defined as

clus_gain(C, M) = |O\Cov(M)|
k(C)

(8)
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Fig. 7 Examples of objects under subspaces {a1, a2} and {a3, a4}.C1, C2 are significant subspace clusters
under the relevance model. C1, C2, C7 are significant subspace clusters under the orthogonal model

A cluster with a high cluster gain is considered significant, if (1) it does not share
its objects with other clusters (global property), and (2) its cost function is low, which
means that the cluster is ‘interesting’, e.g. having high density (local property).

The relevance model is defined as follows:

Definition 18 (Relevance model) M∗ is the set of significant subspace clusters if

– ∀C ∈ M∗ : clus_gain(C, M∗\{C}) > Δ.
– ∀C ′ /∈ M∗ : clus_gain(C ′, M∗) ≤ Δ

– Overall relative cost of M∗ =
∑

C∈M∗ k(C)

|Cov(M∗)| is minimal with respect to other sets of
clusters M ⊆ AL L

Parameter Δ determines the significance of a cluster. The first criterion requires
the clusters in M to be significant, and the second criterion requires clusters not in M
to be insignificant. The last criterion requires that the best set of significant clusters
is obtained. Figure 7a, b show objects in subspaces {a1, a2} and {a3, a4} respectively.
M∗ = {C1, C2} is a set of significant subspace clusters under the relevance model,
assuming that the cost function is dependent on the size of the subspace. Hence C1
and C2 have lower costs than the other clusters. Depending of the parameters setting,
cluster C7 may not be in M∗ as its set of objects is highly overlapping with those of
C1 and C2.

Orthogonal model Orthogonal subspace clustering aims to find a set of
subspace clusters such that most of the objects and attributes are covered by the
clusters, but there is not much overlapping of the clusters. Each subspace cluster rep-
resents a ‘concept’ (Günnemann et al. 2009), which is described by the attributes of the
cluster. For example, the concept “taste of music” is described by attribute “number
of rock concerts attended” and attribute “number of classic concerts attended”. The
subspace clusters are ‘orthogonal’ as their sets of objects and sets of attributes are
almost different from each other.

Günnemann et al. (2009) first define concept group, which is a group of subspace
clusters that have highly similar set of attributes (similar concepts) with respect to a
subspace cluster C = (O, A).

conceptGroup(C, M) = {Ci ∈ M\{C}||Ai ∩ A| ≥ β.|A|} (9)
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β is a parameter that controls the degree of overlapping allowed in the set of attri-
butes with cluster C . β = 1 means that a subspace cluster Ci has the same concept
with C if the set of attributes Ai is equivalent to set of attributes A.

Next, global interestingness is used to ensure that clusters in a concept group do
not have highly overlapping sets of objects.

Iglobal(C, M) = |O\Cov(conceptGroup(C, M))|
|O| (10)

A cluster is not removed if its set of objects has low overlap with the sets of objects
of other clusters in the concept group, i.e. Iglobal(C, M) ≥ α, where α is the threshold
controlling the strictness of the overlapping.

The set of subspace clusters M is defined as an orthogonal clustering if ∀C ∈ M :
Iglobal(C, M\{C}) ≥ α, i.e. the clusters in the concept group have low overlaps.

Günnemann et al further proposed a function Ilocal , which is the same as the cost
function k of the relevance model, except that high Ilocal implies that the cluster is of
high quality. The orthogonal model is defined as follows:

Definition 19 (Orthogonal model) M∗ is the set of significant subspace clusters such
that

M∗ = arg max
M∈Ortho

{
∑

C∈M

Ilocal(C)}

with Ortho = {M ⊆ All|M is an orthogonal clustering}

In words, subspace clusters in the same concept group have minimal overlapping
in their sets of objects and quality of each of subspace cluster is high.

In Fig. 7a, b, M∗ = {C1, C2, C7} is a set of significant subspace clusters under the
orthogonal model. Although the set of objects of C7 is highly overlapping with those
of C1 and C2, C7 is of different concept group as C1 and C2.

Properties of the clusters of relevance and orthogonal model:

– Homogeneity and size The homogeneity and size of the clusters are dependent
on the definition of the subspace clusters.

– Significant subspace clusters The subspace clusters are significant when (1) the
quality of the clusters are high, and (2) there is minimal overlapping between the
clusters for the relevance model, or there is minimal overlapping between clusters
whose sets of attributes are similar for the orthogonal model.

– Number of parameters The relevance model has tuning parameter Δ which deter-
mines the significance of the cluster. The orthogonal model has tuning parameters
β which controls the degree of overlapping in the attributes of the clusters and α

which controls the degree of overlapping in the objects of the clusters. Depending
on the definition of the subspace cluster used in the models, it is also possible to
have parameters of the subspace clusters.

– Parameter sensitivity Both models are sensitive to their tuning parameters and
it may be difficult to set them as they are non-meaningful and non-intuitive.
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An extension of orthogonal subspace clustering, known as alternative subspace
clustering (Günnemann et al. 2010b), is proposed. In alternative subspace clustering,
a set of subspace clusters K nown is assumed to be known and the problem is to find
orthogonal subspace clusters which are different from subspace clusters in K nown.
The similarities and differences between alternative clustering and subspace clustering
are sketched in (Kriegel and Zimek 2010).

Statistical significant subspace clusters The significant subspace clusters pre-
sented so far are determined by the user, as the user has to set parameters and clusters
which satisfy the parameters are considered significant. Hence, the clusters are sensi-
tive to the parameters, and as mentioned earlier, setting the right parameters can be a
difficult task for the user.

Moise and Sander proposed a fundamental shift from parameter-sensitive subspace
clustering (Moise and Sander 2008). They proposed that a subspace cluster should
be significant if it contains significantly more objects than expected under statistical
principles. Thus, this approach is less sensitive to parameters.

Let H = Πa∈A DO(a) be the hyper-rectangle formed by the subspace cluster
C = (O, A) and let vol(H) = Πa∈Ar(DO(a)) be the volume of the hyper-rectangle
H , and vol(A) = Πa∈Ar(D(a)) be the volume of the hyper-rectangle formed by the
subspace A.

H is statistically significant if the number of objects O in hyper-rectangle H is
significantly more than expected under uniform distribution. We have the null hypoth-
esis that the number of objects O in hyper-rectangle H is Binomial distributed, i.e.
|O| ∼ Binomial(|O|, vol(H)

vol(A)
). The hyper-rectangle H is statistically significant if

|O| > θα , where θα is the upper critical level of the hypothesis test, at significant level
α.

Besides being statistically significant, Moise and Sander also require the subspace
cluster not to be induced or explained by any other subspace clusters. Moise and
Sander first made the following assumption:

Assumption 1 The data distribution is generated by the set of “true” subspace clusters
M plus background noise.

Thus, a subspace cluster C ′ = (O ′, A′) is explained or induced by the set of sub-
space clusters M , if O ′ is consistent with Assumption 1. Therefore, we only need to
mine the set of true subspace clusters M , as the other clusters can be explained by M .

To justify that subspace cluster C ′ is explained by M , we have to test if the number
of objects in its hyper-rectangle H ′, is not significantly larger or smaller than what
can be expected, under Assumption 1.

Given a subspace cluster C = (O, A) ∈ M , let πH ′(C) be the hyper-rectangle of
subspace cluster C ′ that is explained by the hyper-rectangle of subspace cluster C .
We denote the volume of πH ′(C) as vol(πH ′(C)) = Πa∈A′∩Ar(DO ′∩O(a)).Πa∈A′\Ar
(DO ′(a)). The number of objects in πH ′(C) is assumed to follow a Binomial distribu-
tion Binomial(n,

vol(πH ′ (C))

vol(H)
), where n is the estimated number of objects generated

by the distribution of C . Using the same hypothesis test above in testing the signifi-
cance of a hyper-rectangle, the upper and lower critical levels of the number of objects
in πH ′(C) are calculated. This test on subspace cluster C ′ is repeated using each clus-
ter C ∈ M , and the upper and lower critical levels are summed up. If |O ′| falls within
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Fig. 8 Cluster 2 and 3 are
correlated subspace clusters, as
their values have high
co-occurrences, and their
co-occurrences in the cluster are
not by chance (i.e., they only
co-occur in their respective
clusters)

the summed upper and summed lower critical levels, then we say C ′ is explained by
the set of “true” subspace clusters M .

Definition 20 (Statistical significant subspace clusters) M is the set of statistical
significant subspace clusters under uniform distribution if

– ∀C ∈ M :π(C) :=
{
1. H is statistically significant
2. ∀a ∈ A : objects in O are not uniformly distributed in D(a)

– 3. M has the smallest cardinality |M | in AL L , such that any subspace cluster in
AL L\M is explained (induced) by at least one of the subspace clusters in M .

Criterion 2 can be easily checked by using Kolmogorov-Smirnov goodness of fit
test for uniform distribution (Snedecor and Cochran 1989).

Properties of the clusters:

– Homogeneity Homogeneity function is not defined, but the homogeneity of the
clusters are considered during the mining of the clusters. In its algorithm STATPC,
each object is taken as a subspace cluster and other objects are greedily added to
it based on their distance.

– Size The size of the cluster is defined by criteria 1 and 2 of Definition 20.
– Significant subspace clusters Under Assumption 1, the significant subspace

clusters are the “true” subspace clusters M .
– Number of parameters There are two significance levels to set: the significant

level on the hyper-rectangle H of the cluster and the significant level used in the
Kolmogorov-Smirnov goodness of fit test in criterion 2 of Definition 20.

– Parameter sensitivity The sensitivity of the tuning parameters are tested and
a default parameters setting is chosen (Moise and Sander 2008), which is less
sensitive to the results. However, this approach has the assumption that the data
follows uniform distribution, which is not always the case in real-world data.

Correlated subspace clusters Sim et al. (2009a, 2010a) proposed using mutual
information to mine significant subspace clusters, known as correlated subspace clus-
ters. In a correlated subspace cluster, the values have high co-occurrences in the data-
set, and their co-occurrences in the cluster are not by chance. The latter condition is
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the same as statistical significant subspace cluster’s condition that the cluster is not
explained by other clusters. Figure 8 shows an example of a 3D dataset, with three
subspace clusters. The values in cluster 1 has high co-occurrences, but they also occur
in other objects (xo9a2 = xo10a1 = 0, xo7a2 = xo8a2 = 0), hence cluster 1 is not signifi-
cant. Cluster 2 and 3 are significant clusters, as their values have high co-occurrences,
and their co-occurrences in the cluster are not by chance (i.e., they only co-occur in
the clusters).

A metric known as correlation information is used to measure how correlated the
subspace cluster is. High correlation information means that the cluster is correlated,
and hence it is significant. Let us assume that a subspace cluster C contains two val-
ues x, y, and let the probability of x occurring in the dataset be denoted as p(x). The
correlation information is defined as ci(C) = p(x, y)log p(x,y)

p(x)p(y)
. Intuitively, the first

term measures the co-occurrences of the values, and the second term measures if the
co-occurrences are by chance.

Correlated subspace clusters can be mined from either 2D or 3D dataset, and Sim
et al explained them in the context of 3D dataset. The clusters in 2D context can be
easily understood by assuming that the dataset only contains a single timestamp.

In 3D dataset, Sim et al denote sub-cuboid O × A × T as the domain of a set of
attributes A at a set of timestamps T , represented as D(A, T ). They define a slice of
the sub-cuboid as S = {o}× A×T ∈ D(A, T ). They denote DO(A, T ) = O × A×T
as the domain of the set of attributes A at a set of timestamps T , projected on the set
of objects O .

Given that there is a sub-cuboid C = (O, A, T ) which is a correlated subspace
cluster, and there is a slice St = {o} × A × {t} ∈ DO(A, {t}), Sim et al convert slice
St to a vector vt by the following function:

Definition 21 (Mapping of slice St = {o} × A × {t} to column vector vt ) Let slice
St be represented as a partially ordered set {xoat |a ∈ A} with cardinality d, and let
v = (v1, . . . , vd)T be a column vector of d values. St is mapped to vt using function
β : St → vt = xoat �→ vi (1 ≤ i ≤ d).

Assume that there are three vectors v1 = (u1, . . . ul), v2 = (v1, . . . vm), v3 =
(w1, . . . wn). For brevity, a sequence of values v1, . . . , vm is represented as v1...m . The
correlation information of these three vectors is given as follows:

c̃i(v2, v3|v1) =
m∑

i=1

n∑
j=1

p(v1...i , w1... j , u1...l)

log
p(v1...i ,w1... j ,u1...l )

p(v1...i ,w1... j−1,u1...l )p(v1...i−1,w1... j ,u1...l )

(11)

where p(.) is the probability of the values occurring in the dataset, and kernel density
estimation (Silverman 1986) is used in calculating the probability of the continuous
values.

Definition 22 (Correlated subspace cluster) A sub-cuboid C = (O, A, T ) is a
correlated subspace cluster if
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π(C) := c̃i(C) =
∑
i∈T

∑
v1∈DO (A,{1})...vi∈DO (A,{i})

c̃i(vi, vi−1|v1,...,i−2) (12)

is high

Intuitively, a sub-cuboid C is a correlated subspace cluster if (1) for each time
frame O × A × {t} of C , its values are correlated and (2) for each pair of contiguous
time frames O × A × {t} and O × A × {t + 1} of C , they are correlated, given prior
time frames. Determining how high c̃i(C) is considered to be significant is explained
in the correlated subspace clustering algorithm MIC in Sect. 6.3.

Properties of the clusters:

– Homogeneity The homogeneous function is not used in correlated subspace
cluster, but the homogeneity of the values in the cluster is considered when the
kernel density estimation is used in calculating the probability of the values, as
values that are closed together have high probabilities.

– Size There is no size requirement.
– Significant subspace cluster The significance of the cluster is based on how

correlated its values are, which is measured using correlation information. Values
are correlated when they have high-occurrences, and their co-occurrences are not
by chance.

– Number of parameters No parameters are required to define the cluster, but
the algorithm MIC requires setting of a tuning parameter, which determines the
number of seeds (pairs of values) used in building the clusters.

– Sensitivity to parameters Not applicable.

5.2.2 Semi-supervised subspace clustering

Constraint based subspace clustering In constraint based subspace clustering, the
definition of the subspace clusters is dependent of the user. For example, density based
or window based subspace clusters can be used. Constraints, which we can consider
as additional criteria, are then ‘add-on’ to the clusters.

Similar to traditional constraint based clustering (Wagstaff et al. 2001), object-
level constraints are incorporated in constraint based subspace clustering (Fromont
et al. 2009). There are two types of object-level constraints: must-link and cannot-
link. Must-link indicates that a pair of objects must be in the same cluster, while
cannot-link indicates that a pair of objects cannot be in the same cluster.

Properties of the clusters:

– Homogeneity, Size, Sensitivity to parameters, Number of parameters These prop-
erties are dependent on the definition of the subspace cluster. In (Fromont et al.
2009), grid based and window based subspace clusters are used.

– Semi-supervised The cluster satisfies the must-link and cannot-link constraints.

Actionable subspace clustering The concept of actionable is derived from action-
able patterns (Kleinberg et al. 1998), which are patterns that have the ability to suggest
profitable action for the decision-makers. Sim et al. (2010b) proposed actionable sub-
space clusters, which are particularly useful in financial data mining. For example,
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investors can generate profit by buying stocks from an actionable subspace cluster
defined by a set of stocks (objects) and a set of financial ratios (attributes).

A continuous attribute known as utility is proposed to measure the actionability of
the cluster; the higher the utility of the objects, the higher is the actionability of the
cluster. Utility is similar to the object-level constraints, except that utility is continuous
while object-level constraints are binary indicators.

Actionable subspace clusters are mined from a 3D dataset D = O × A × T, and
are defined as follows:

Definition 23 (Actionable subspace cluster) C = (O, A) is a subspace cluster if
h(C) :=
– ∀t ∈ T: the objects in O are similar on attributes in A
– the objects in O have high and correlated utility

Thresholds are not used to explicitly define the goodness of the objects’ similarity
and correlation. Instead, the goodness of the objects are expressed in weights, and
an objective function is used to calculate the weights with respect to a centroid. By
maximizing this objective function, objects which have high weights are clustered
with the centroid. Its algorithm MASC (described in Sect. 6.4) adaptively determines
a threshold on the weights, and objects whose weights are above the threshold are
used in the clustering.

Given a centroid c, let poa be the weight indicating if the object o should be
part of a cluster containing c, on attribute a. Each attribute a has a set of weights
P = {po1a, . . . , po|O|a} and each set of weights P is calculated by optimizing the
objective function

f (P) = f util(P) · f corr (P) (13)

f util(P) measures the utility of each object and its similarity to the centroid, i.e.

f util(P) =
∑
o∈O

poa s(c, o) util(o)ρ(c, o) (14)

s(c, o) is the similarity metric between c and o in Euclidean space, util(o) is the
utility of o and ρ(c, o) measures the linear correlation of the utility between c and o.
An object will have a high weight, if (1) it is highly similar to centroid c on attribute
a, (2) its utility is high and correlated to the utility of c.

f corr (P) measures the linear correlation between objects, and their similarity to
the centroid, i.e.

f corr (P) =
∑

o,o′∈O×O|o �=o′
poa po′a s(c, o) s(c, o′) ρ(o, o′), (15)

This function ensures that higher weightages are given to objects that have corre-
lated utilities and that are similar to centroid c.

Properties of the clusters:
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– Homogeneity The homogeneity is dependent on the weights of the objects, and
is measured using Euclidean distance. There is a requirement of the clusters to
be persistent in every timestamps, which may be too stringent. Hence actionable
subspace clusters have the same weakness of coherent gene clusters (Definition
11).

– Size Similar to homogeneity, the size of the cluster is dependent on the weights
of the objects.

– Semi-supervised The objects in the cluster are required to have high and corre-
lated utilities.

– Number of parameters The user has to select the centroids, based on the domain
knowledge of the user. This selection of centroids can be considered as a parameter.

– Sensitivity to parameters No parameters are required to explicitly define the
goodness of the cluster.

There are projected clusterings which also use optimization based approach (Chan
et al. 2004; Domeniconi et al. 2004; Jing et al. 2007). Similar to actionable subspace
clustering, their objective functions are formulated such that the distances between
the objects and the centroid of a cluster are minimized. However, they are k-means
algorithms which optimize their objective function in a global sense, i.e. they aim to
obtain an optimal partition of the objects. Actionable subspace clustering optimizes
its objective function in a local sense, i.e. a set of objects are optimally clustered with
respect to a centroid.

In these projected clusterings, the objects are clustered based on the whole set of
attributes, and not on subspaces. Hence, we do not know in which subspaces the objects
are homogeneous in. These projected clusterings may also be sensitive to outliers, as
each object is required to be in a cluster, and this problem is aggravated by the need
to select an appropriate number of clusters.

Twofold clustering In some applications, data in the form of 2D dataset
D = O×A, and a graph G (with the objects as the vertices, i.e. V (G) = O), are avail-
able. Günnemann et al. (2010a) proposed simultaneous clustering on both matrix and
graph, to produce more meaningful and accurate clusters, denoted as twofold clusters.
More specifically, their aim is to mine sets of objects which are homogeneous in their
subspaces of the matrix, and at the same time, are densely connected in the graph. For
example in target and viral marketing, it is useful to find groups of people which have
similar attributes, and know (connected to) each other. Figure 9 shows an example,
where each node represents a person, and two persons are connected if they know
each other. Person 2-5 are densely connected, and at the same time, their attributes
(age and interest) are similar. Hence, the set of objects (person) {2, 3, 4, 5} and the set
of attributes {age, interest} form a subspace cluster.

This synthesis of the two paradigms can be seen as a form of semi-supervised sub-
space clustering, as information from the graph data is used to guide and improve the
subspace clustering process.

Let degO(o) be the degree of vertex(object) o within the set of vertices(objects)
O , i.e. degO(o) = |{o′ ∈ O|(o, o′) ∈ E(G)}|. We measure the density of a subgraph

formed by a set of vertices (objects) O by γ (O) = mino∈O {degO (o)}
|O|−1 . The higher the

density, the more connected are the vertices of the subgraph.
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Person 2
Age: 19
Interest: Gaming

Person 4
Age: 21
Interest: Gaming

Person 3
Age: 20
Interest: Gaming

Person 5
Age: 22
Interest: Gaming

Person 6
Age: 25
Interest:
Shopping

Person 1
Age: 31
Interest: Reading

Fig. 9 A synergy of graph and 2D dataset D = O×A. Each node represents a person, and the attributes of
the person are shown. The set of objects (person) {2, 3, 4, 5} and the set of attributes {age, interest} form
a subspace cluster

Definition 24 (Twofold cluster) C = (O, A) is a twofold cluster if

– h(C) :=
⎧⎨
⎩

1.

{∀a ∈ A : ∀o, o′ ∈ O : |xoa − xo′a | ≤ w

∀a ∈ A/A : ∀o, o′ ∈ O : |xoa − xo′a | > w

2. γ (O) ≥ γmin

– π(C) := |O| ≥ mino ∧ |A| ≥ mina

In the homogeneity function h(C), the first criterion focuses on the subspace cluster
C , while the second criterion focuses on its corresponding dense subgraph.

Like the other subspace clusters, it is possible that an exponential number of twofold
clusters can be generated, depending on the parameters setting. Hence, Günnemann
et al. (2010a) proposed mining a set of optimal twofold clusters, and remove twofold
clusters that are redundant. A twofold cluster C ′ is redundant if it is highly similar to
another twofold cluster C , and its quality is lower than the quality of C . The quality of
a twofold cluster C = (O, A) is defined as Q(C) = γ (O)a .|O|b.|A|c, where param-
eters a, b, c control the weightages of the cluster’s characteristics in contribution to
the quality of the cluster.

Formally, a twofold cluster C ′ = (O ′, A′) is redundant if there is another twofold
cluster C = (O, A), such that (1) Q(C ′) < Q(C), (2) |O ′∩O|

|O ′| ≥ ro, and (3) |A′∩A|
|A′| ≥

ra . We denote this redundancy relationship as C ′ ≺red C , and parameters ro, ra deter-
mine the thresholds on the clusters’ overlapping. This redundancy relationship is used
in obtaining the optimal twofold clustering, which is defined as follows:

Definition 25 (Optimal twofold clustering)
M is the set of optimal twofold clusters such that

– ¬∃Ci , C j ∈ M : Ci ≺red C j

– ∀Ci ∈ AL L\M : ∃C j ∈ M : Ci ≺red C j

Properties of the clusters:

– Homogeneity The homogeneity is dependent on the two main criteria of the homo-
geneity function shown in Definition 24. The first criterion requires the cluster to
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be homogeneous in its subspace2 and not homogeneous in other attributes, with
parameter w controlling the distance allowed between the objects.
The second criterion requires the objects in the cluster to be highly connected
to each other, with parameter γmin determining the minimum connectivity of the
objects in the cluster.

– Size The size of the cluster is determined by the parameters mino and mina .
– Significant subspace cluster The optimal twofold clustering is similar to the

concept of the relevance (Definition 18) and orthogonal (Definition 19) models,
where the optimal twofold clusters are high in quality and have low overlapping
among each other.

– Semi-supervised The objects in the cluster are required to be highly connected.
– Number of parameters There are a total of nine tuning parameters to set,

w, γmin, mino, mina, a, b, c, ro, ra .
– Sensitivity to parameters The cluster is sensitive to the tuning parameters.

5.3 Summary

Table 3 presents the desired properties that the subspace clustering approaches have.
Compared to the basic subspace clustering approaches, the enhanced subspace clus-
tering approaches have more of the desired properties.

6 Subspace clustering: algorithms

We categorize the subspace clustering algorithms into four main families, namely
lattice based algorithm, statistical model, approximation algorithm and hybrid algo-
rithm.

6.1 Lattice based algorithm

Traversal on the lattice (also known as the Hasse diagram) is the most common method
used in subspace clustering, which is also a commonly used method in frequent itemset
mining (Agrawal and Srikant 1994) and graph mining (Tomita et al. 2004).

Let us assume that we have a set of candidates (or building blocks) of subspace
clusters. The candidates can be the units of grid based subspace cluster (Definition 6),
the windows of the window based subspace cluster (Definition 7), attribute values, or
attributes, etc.

The powerset of the candidates is modeled as a lattice, with each node of the lattice
representing a set of candidates. Potential subspace clusters are mined from each node.
Figure 10a shows an example of a lattice with candidates {a, b, c, d}. In some litera-
tures (Kriegel et al. 2009), the lattice is inverted and traversal from the root is known
as bottom up traversal.

2 This is similar to the homogeneity function of window based subspace cluster (Definition 7).
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{}

{a} {b} {c} {d}

{a,b} {a,c} {a,d} {b,c} {b,d} {c,d}

{a,b,c} {a,b,d} {a,c,d} {b,c,d}

{a,b,c,d}

(a)

{}

{a} {b} {c} {d}

{a,b} {a,c} {a,d} {b,c} {b,d} {c,d}

{a,b,c} {a,b,d} {a,c,d} {b,c,d}

{a,b,c,d}

(b)

Fig. 10 a The lattice (also known as the Hasse diagram) of candidates {a, b, c, d}. b The set enumeration
tree of candidates {a, b, c, d}

Let cand be the set of candidates of a node, and let us assume that a clustering algo-
rithm has a function f (cand), which generates one or more subspace clusters based
on cand, i.e. f (cand) = {C1, . . . , Cm}. An efficient algorithm will ensure that sub-
space clusters generated from a node are unique from the others, to avoid generation
of duplicated clusters.

The worst-case time complexity of the traversal of the search space is O(2n), assum-
ing that we have n candidates. Thus, efficient traversal and pruning of the search space
are the two main concerns of clustering algorithms using this method.

There are two ways to traverse the lattice, breadth-first and depth-first. In breath-
first traversal, all nodes at a level of the lattice are traversed before moving down to the
children nodes in the next level. For example in Fig. 10a, node {a, b, c} is traversed
after its parent nodes {a, b}, {a, c}, {b, c} are traversed. For depth-first traversal, the
lattice can be arranged as a set enumeration tree (Rymon 1992), where each child is
traversed only by one of its parents, to prevent duplicate traversals of nodes. Figure
10b shows an example of a set enumeration tree. In depth-first traversal, the nodes are
recursively traversed downwards.

The choice of traversal depends on the properties of the subspace clusters and
memory overhead. In terms of the properties of the subspace clusters, it is possible
that exploitation of them may lead to more efficient traversal in either breadth-first or
depth-first.

In terms of memory overhead, depth-first traversal will be the better choice as it
uses less memory. Depth-first traversal only needs to consider a recursive path of
nodes during traversal, while breath-first traversal needs to consider the nodes per
level, which the number of nodes can be in exponential. This usually happens in the
middle levels of the lattice, as the lattice is typically diamond-shaped.

6.1.1 Subspace cluster with anti-monotone property

To allow efficient pruning of the search space, some subspace clusters are defined in
such a way that their properties can be exploited to prune the search space. The most
common pruning property is the anti-monotonicity of the subspace cluster.
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Table 4 A summary of subspace clusters that are mined using the lattice traversal method

Cluster/subspace Algorithm Traversal Monotonicity

Grid based subspace cluster
(Definition 6)

CLIQUE (Agrawal et al.
1998)

Breadth-first
√

Density based subspace
cluster (Definition 8)

SUBCLU (Kailing et al.
2004)

Breadth-first
√

Window based subspace
cluster (Definition 7)

MaxnCluster (Liu et al. 2009) Depth-first
√

Binary 3D subspace cluster
(Definition 9)

Data Peeler (Cerf et al. 2008,
2009)

Depth-first
√

CubeMiner (Ji et al. 2006) Depth-first
√

TRIAS (Jaschke et al. 2006) Breadth-first
or depth-first

√

Dense 3D subspace cluster
(Definition 10)

DCE (Georgii et al. 2010) Reverse

Coherent gene cluster
(Definition 11)

Gene-sample search and
Sample-gene search (Jiang
et al. 2004a)

Depth-first
√

Triclusters (Definition 12) TRICUSTER (Zhao and Zaki
2005)

Depth-first
√

Categorical subspace clusters
(Definition 13)

CLICKS (Zaki et al. 2005) Depth-first

Subspace α-cluster
(Definition 14)

CI, CM-UPALL,
CM-UPONE (Kontaki et al.
2008)

Breadth-first
√

Quasi-biclique
(Definition 15)

MQBminer (Sim et al. 2009b) Depth-first
√

CGQB (Sect. 2.3.1) CGQBminer (Sim et al. 2011) Depth-first
√

Entropy based subspace
(Sect. 5.2.1)

ENCLUS (Cheng et al. 1999) Breadth-first
√

Interesting subspace
(Sect. 5.2.1)

RIS (Kailing et al. 2003) Breadth-first
√

Constraint based subspace
cluster (Sect. 5.2.2)

SC-MINER (Fromont et al.
2009)

Depth-first
√

Twofold cluster
(Definition 24)

GAMER (Günnemann et al.
2010a)

Depth-first

Definition 26 (Anti-monotonicity) If submatrix O × A forms a subspace cluster,
then any submatrix O ′ × A′ that is a subset of O × A, i.e. O ′ ⊆ O, A′ ⊆ A, also
forms a subspace cluster.

Hence, if a submatrix does not form a subspace cluster, then its superset also does
not form a subspace cluster. The anti-monotonicity of the subspace cluster is a simple
yet efficient way of pruning the search space; if a node of the lattice does not have a
subspace cluster, then there is no need to traverse to its children because its children
too will not have subspace clusters.

In subspace clustering algorithms, it is quite common to use lattice based algorithm
with anti-monotonicity as the pruning measure. We present the algorithms and their
characteristics in Table 4. In the following, we discuss variations of the standard lattice
based algorithm.
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Coherent gene clustering (Definition 11) Two lattice based algorithms are pro-
posed (Jiang et al. 2004a) to mine coherent gene clusters. The Gene-Sample search
algorithm creates a set enumeration tree of genes, with each node representing a set
of genes. Depth-first traversal is performed on the tree, and when a node is traversed,
its set of genes is used to obtained its corresponding set of samples, which together
form a coherent gene cluster. Similarly, the Sample-Gene search algorithm creates
a set enumeration tree of samples and depth-first traversal is performed to mine the
clusters.

Similarly, the Sample-Gene search algorithm creates a set enumeration tree of
samples and depth-first traversal is performed to mine the clusters. The choice of the
algorithm is dependent of the dataset. In microarray dataset, the number of genes is
typically larger than the number of samples. Thus the Sample-Gene search is faster
than the Gene-Sample search, as its set enumeration tree is smaller.

Subspace α-clustering (Definition 14) To allow efficient clustering in stream
data, subspace α-clusters (Kontaki et al. 2008) are mined in a sliding window of size
w on the streaming attributes, instead of the whole stream data. Hence, the clustering
is localized to a matrix O × {ai , . . . , ai+w}. When a right-most attribute ai+1+w is
streamed in, the matrix is shifted and becomes O × {ai+1, . . . , ai+1+w}.

Three lattice based algorithms are developed to mine subspace α-clusters, with the
nodes of the lattice representing a set of objects and a set of attributes that can form
the clusters. The first algorithm CI, is used to mine the initial set of subspace α-clus-
ters based on the first sliding window of the streaming data. It traverses the lattice in
breadth-first search to mine the clusters, and pruning of the search space is based on
the anti-monotonicity of the subspace α-clusters.

The second algorithm CM-UPALL, is used when the sliding window is moved
one position to the right on the attributes, i.e., the data is changed from matrix
O × {ai , . . . , ai+w} to matrix O × {ai+1, . . . , ai+1+w}. CM-UPALL first checks the
existing clusters with respect to the new matrix. Clusters that fail the cluster criteria
with respect to the new matrix are removed. And some clusters are expanded due to
the new matrix. Next, CM-UPALL mines new clusters from the new matrix, based on
the same algorithm as CI. The third algorithm CM-UPONE, is used when the sliding
window is moved one position to the right on the attributes, but only the data of an
object o is involved. CM-UPONE is similar to CM-UPALL, except that it only updates
clusters that involved object o.

Mining interesting subspaces (Sect. 5.2.1) To mine interesting subspaces,
Kailing et al. (2003) proposed taking each object as a centroid. For each centroid,
a lattice is constructed and used to find interesting subspaces with respect to the cen-
troid. The nodes of the lattice are sets of attributes. The traversal is in breadth-first
and there is anti-monotonicity on the interesting subspaces for efficient pruning of the
lattices.

Constraint based subspace clustering (Sect. 5.2.2) Fromont et al. (2009) pro-
posed an algorithm that allows incorporation of object-level constraints into grid based
and window based subspace clusterings. The algorithm SC-MINER uses the set enu-
meration tree method to mine the clusters, and it pushes the cannot-link and must-link
constraints into the mining for efficient traversal of the tree. Let D be a set of bins,
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which are the grids or windows of the dataset. The choice of using grids or windows
as bins depends on which type of subspace clusters are to be mined.

SC-MINER traverses the tree in depth-first search, and recursively enumerates all
constraint based subspace clusters (O, A). Each node of the tree contains a triplet
< (O, D), (O ′, D′), (ON , DN ) >, where (O, D) are the members of the subspace
cluster currently enumerated, (O ′, D′) are objects and bins yet to be enumerated, and
(ON , DN ) are objects and bins that have been enumerated as elements that do not
belong to any subspace clusters currently being mined.

During the traversal from a node, an element (object or bin) e is enumerated and
put in (O, D), and all elements of (O ′, D′) that are not related to e are removed, thus
the search space is reduced considerably. For example, objects that have the cannot-
link constraint with e are removed from (O ′, D′), objects o′ that have the must-link
constraint with e are put into (O, D), or objects that have the cannot-link constraint
with o′ are removed from (O ′, D′).

Graph based clustering In some algorithms, the data is first pre-processed and
information required to mine the clusters is represented in the form of graphs. Special-
ized subgraphs such as cliques or bicliques are then mined from the graphs, and these
specialized subgraphs either correspond to the clusters, or post-processing is done on
these specialized subgraphs to get the clusters.

In these algorithms, the mining of the subgraphs is done using the lattice, with the
nodes of the lattice representing sets of vertices of the graph.

Mining quasi-bicliques (Definition 15) Quasi-bicliques are mined from the set
enumeration tree of the vertices of the graph (dataset) in depth-first traversal (Sim
et al. 2009b). The anti-monotone property of quasi-bicliques is used to prune the tree.

Mining triclusters (Definition 12) Mining of triclusters consists of two stages
(Zhao and Zaki 2005). In the first stage, for each timestamp t of the dataset, a directed
weighted multigraph Gt is constructed, with the vertices representing the attributes.
Note that a multigraph allows multiple edges between a pair of vertices. A directed
edge from one vertex (attribute) a to another vertex (attribute) a′ is associated with a
set of objects that is related on the attributes a and a′.

Maximal clique subgraphs are mined from each multigraph Gt , with each maximal
clique subgraph representing a set of objects (obtained from the edges of the clique)
related to a set of attributes (obtained from the set of vertices of the clique) in time-
stamp t . Thus, maximal clique subgraphs can be considered as biclusters which will
be used to form triclusters. The maximal clique subgraphs are systematically mined
by traversing a set enumeration tree in depth-first order, with each node of the tree
corresponding to a set of vertices (attributes) of the multigraph.

In the second stage, a final weighted multigraph is constructed, with the vertices
representing the timestamps. An edge between vertex (timestamp) t and vertex (time-
stamp) t ′ is associated with a pair of highly overlapping biclusters from timestamps t
and t ′. Similar to the previous stage, maximal clique subgraphs are mined from this
multigraph, and each maximal clique subgraph corresponds to a tricluster.

The two-stage mining of TRICLUSTER may have efficiency issues, as during the
first stage mining, the time information is not used to prune the biclusters. Thus, it is
possible that a large number of biclusters are mined on each multigraph in the first
stage, but only a small number of them are part of triclusters.
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6.1.2 Subspace cluster without anti-monotone property

There are certain subspace clusters that do not have the anti-monotonicity property in
their definition, such as the dense 3D subspace cluster (Definition 10) and quasi-bic-
lique with relative noise tolerance (Sect. 5.1.4).

Categorical subspace clustering (Definition 13) CLICKS (Zaki et al. 2005) is
a graph based algorithm that uses the lattice to mine categorical subspace clusters.
A k-partite graph is first created, where the vertices represent attribute values of the
data. Two vertices representing attribute values xa, xa′ have an edge if they are ‘dense’
together, i.e. their occurrence together is more than expected (cf. Definition 13 second
criterion).

The k-partite graph is converted to a set enumeration tree, with the nodes of the
tree representing the sets of vertices (attribute values). Depth-first traversal is then
performed on the tree to mine k-partite clique subgraphs, which are the categorical
subspace clusters. In a k-partite clique subgraph, there are k vertices (attribute values),
and they are connected to each other. In addition, each of these k vertices belongs to
different attributes.

Due to the non-monotonic definition of categorical subspace cluster, it is possible
that a k-partite clique subgraph is not a subspace cluster, but its subgraphs are. Hence,
there is post-processing to check if a k-partite clique subgraph is a valid categorical
subspace cluster. If the k-partite clique subgraph is an invalid cluster, its subgraphs
are checked for subspace clusters.

Dense 3D subspace clustering (Definition 10) For dense 3D subspace cluster-
ing (Georgii et al. 2010), anti-monotonicity is induced by using the reverse search
paradigm (Avis and Fukuda 1996) in its mining process.

The reverse search paradigm arranges the lattice into a reverse search tree, with
each node representing a dense 3D subspace cluster C = (O, A, T ), and each node
has only one parent, to avoid duplicate traversals of nodes. In the tree, the density of
the cluster in a node is at least as large as the maximum density among its children.
Hence, if the density of the cluster of the node is less than a threshold θ , then this node
can be pruned as the density of the clusters of its children nodes will be less than θ .

We shall explain how the parent-child relation is established between nodes, which
is needed to ensure anti-monotonicity of the reverse search tree. Let us denote degree
as degC (o) = ∑

xoat ∈{o}×A×T xoat , degC (a) = ∑
xoat ∈O×{a}×T xoat and degC (t) =∑

xoat ∈O×A×{t} xoat . Given that there is a cluster C = (O, A, T ), let us assume that
we obtain cluster C ′ by removing the element u ∈ {O, A, T } with the minimal degree
degC (u) from cluster C . There is a parent-child relation between clusters C ′ and C ,
where the node with cluster C ′ is the parent of the node with cluster C .

Twofold clustering (Definition 24) Günnemann et al. (2010a) proposed algorithm
GAMER, which performs a depth-first search on a set enumeration tree of objects to
mine twofold clusters. Each node of the tree represents a set of objects that potentially
can form a twofold cluster. Pruning of the tree is based on the properties of the cluster
definition and the optimal twofold clustering (cf. Definition 25).

However, not all invalid clusters can be pruned, as the density of the subgraphs and
the redundancy relationship do not have monotonicity. To circumvent this problem,
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all generated clusters are first stored in a queue. After the set enumeration tree is tra-
versed, this queue will be processed to obtain the final clusters, based on the criteria of
the optimal twofold clustering. This queue also stores subtrees that are not traversed
yet, due to them having the possibility of containing redundant clusters. During the
processing of queue, each subtree is checked and if it is found to be redundant, it is
discarded. Otherwise, the subtree is traversed to mine the clusters.

Properties of the algorithms:

– Complete result The completeness is guaranteed as the traversal on the lattice
to mine the clusters is deterministic and systematic.

– Stable result Similarly, the result is stable due to the deterministic and systematic
traversal.

– Efficiency The algorithms generally exploit the properties of the clusters to prune
the search space for efficient traversal. Another factor to determine the efficiency
of the algorithms is the number of clusters enumerated, which is dependent on the
setting of the parameters of the clusters (e.g. minimum size thresholds).

– Semi-supervised In constraint based subspace clustering, the object-level con-
straints are pushed into the set enumeration tree. This results in more efficient
mining as the search space is aggressively pruned.

– Up-to-date clustering In stream data clustering, the clusters are constantly
updated, and are not mined from scratch. The mining is also localized to the latest
data stream of window size w for efficiency’s sake. Hence, the user can control
the efficiency of the algorithm via w.

– Number of parameters The algorithms using this method generally have a num-
ber of tuning parameters to set, and most of the tuning parameters are related to the
clusters, and not the algorithms. There is an exception for stream data clustering,
where its parameter w is related to the algorithm.

– Parameter sensitivity The results are sensitive to the tuning parameters of the
clusters and the algorithms. As mentioned in Sect. 2.3.2, there are several weak-
nesses in methods that are sensitive to tuning parameters.

6.2 Statistical model method

In this method, the data is assumed to follow a statistical model, and clustering becomes
a problem of estimating the parameters of the statistical model.

A common algorithm to estimate the parameters is the Expectation-Maximiza-
tion (EM) algorithm. The EM algorithm is an iteration of estimation and maximi-
zation steps to compute the maximum likelihood estimate of the parameters, with
respect to the data (Duda et al. 2001). In the estimation step, the expectation of the
log-likelihood is calculated using the current estimated parameters. In the maximiza-
tion step, the parameters maximizing the expected log-likelihood are estimated, and
these parameters are then used in the next estimation step.

Bayesian overlapping subspace clustering (Sect. 5.1.4) In Bayesian overlap-
ping subspace clustering (Fu and Banerjee 2009), the parameters of the Beta-Bernoulli
distribution α

O

i , β
O

i , αA

i , βA

i , πo
i , πa

i and exponential families θi (cf. Definition 16)
are estimated using an EM-like algorithm. Let αO,βO,αA,βA, θ ,πo,πa be the
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respective sets of parameters to be estimated, with p(D, Zo, Za,πo,πa |αO,βO,αA,

βA, θ) as the likelihood. Zo = [zo] and Za = [za] are the |O| × k and |A| × k binary
matrices of the k-dimensional latent bit vectors for objects and attributes respectively.

In the expectation step, the goal is to estimate the expectation of the log-likelihood
E[log p(D, Zo, Za |αO,βO,αA,βA, θ)]. Gibbs sampling is used to approximate the
expectation. Note that the sets of parameters πo,πa do not need to be estimated as
they are generated by the Beta distributions, which are conjugate priors to Bernoulli
distributions which generate Zo and Za . In the maximization step, the parameters
αO∗,βO∗,αA∗,βA∗ and θ∗, which maximizes the expectation are estimated.

Properties of the algorithm:

– Complete result The completeness is guaranteed as k subspace clusters are
required to be mined.

– Stable result As the method uses Gibbs sampling, which makes use of random
numbers, it is possible that the result is different for each run. If the log-likelihood
is not concave, then the method may have to run multiple times with different
initializations of parameters to get the optimal result.

– Efficiency The number of iterations of the method to convergence is dependent
on the size of the dataset.

– Number of parameters The algorithm has only one tuning parameter k to set,
which specifies the number of clusters.

– Parameter sensitivity Although the cluster is parameter insensitive (cf. Defini-
tion 16), the result is highly sensitive to the algorithm’s tuning parameter k, which
influences the outcome of the clustering result. This problem of determining the
number of clusters is known as the “fundamental problem of cluster validity”, and
a number of solutions can be found in (Xu and Wunsch 2005).

6.3 Approximation algorithm

Approximation algorithm is used when it is computationally infeasible to use the
other methods. Approximation algorithms are normally developed in an ad hoc basis
to suit the clustering problem. During the clustering process, the decision on how to
proceed to the next step is greedy based, i.e. at the current step, the algorithm will
decide the next step based on the current information it has. Hence, the completeness
and quality of the results are sacrificed for the sake of computational feasibility. As
the approximation algorithms normally lack theoretical foundations, the authors will
usually conduct experiments to empirically show the effectiveness of the algorithms.

Subspace clustering for uncertain data (Definition 17) Günnemann et al.
(2010b) proposed a greedy and iterative method to mine subspace clusters from
uncertain data. Each iteration generates a subspace cluster, and the iteration repeats
until no clusters are mined.

In an iteration, a number of medoids are randomly selected from the dataset, and
for each medoid, subspace clusters with respect to the criteria of Definition 17 are
mined. The clusters are mined using the lattice based algorithm (cf. Sect. 6.1), with
the nodes of the lattice representing sets of attributes. At the end of the iteration, the
subspace cluster with the best quality is selected among the clusters and outputted.
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In the next iteration, objects which are in the selected subspace cluster and have high
probability P≤w(m, o, A) are excluded from the dataset to prevent the same subspace
cluster to be mined again.

Properties of the algorithm:

– Complete result The completeness is not guaranteed as the traversal of the search
space of the data is random and greedy based.

– Stable result The result is unstable as the medoids are randomly chosen. Monte-
Carlo sampling is also used to calculate the probabilities.

– Efficiency The algorithm is efficient in relative to algorithms that traverse the
complete search space.

– Number of parameters The algorithm does not have parameters, but it is affected
by the parameters of the cluster (cf. Definition 17).

– Parameter sensitivity The algorithm is sensitive to the parameters of the cluster.

Relevance model (Definition 18) Mining significant subspace clusters under
the relevance model is NP-hard and it is computationally expensive to first mine the
complete set of subspace clusters AL L , and then mine the set of significant subspace
clusters M∗ from AL L . Hence, Müller et al. (2009a) proposed an approximation
algorithm RESCU to mine the significant subspace clusters.

Algorithm RESCU uses a greedy based technique (Müller et al. 2009b) to ‘jump’ to
subspace clusters that have high cluster gain. These subspace clusters with high cluster
gain are mined on-demand and a list of them, ranked in the descending order of the
cluster gain, is maintained. Let the set of significant subspace clusters be denoted as
M∗, and RESCU uses an iteration process to mine this set. In each iteration i , a signif-
icant subspace cluster is picked from the list and added to Mi . The iteration process
repeats until no more significant subspace clusters can be added, and the final Mi is
approximated as M∗.

Orthogonal model (Definition 19) Similar to the relevance model, mining
significant subspace clusters under the orthogonal model is NP-hard (Günnemann
et al. 2009), and thus, an approximation algorithm OSCLU is proposed to mine them.
Algorithm OSCLU consists of iterations of mining good quality subspaces, and mining
significant subspace clusters from these subspaces.

OSCLU first traverses a lattice of attributes from bottom-up, breadth-first manner,
where each node of the lattice represents a subspace (set of attributes). At a level of
the lattice, OSCLU traverses all its subspaces, and each of them are evaluated and
ranked according to (1) the number of overlaps it has with the subspaces of significant
subspace clusters mined previously, and (2) the quality of the subspace, which can
be measured using any of the methods described in Sect. 5.2.1. A subspace is ranked
high if it has little overlapping and is of high quality.

Subspace clusters are then mined from the high ranking subspaces. When a cluster
is mined, it will be checked using the criteria in Definition 19. If previously mined
significant subspace clusters have lower Ilocal and have high overlaps with the newly
mined cluster, then these significant subspace clusters are removed from the results.

Properties of the algorithms:

– Complete result The completeness is not guaranteed as there is no exhaustive
traversal on the search space of the data.
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– Stable result The result of algorithm OSCLU is unstable as some of its steps is
random based, while algorithm RESCU’s result is stable.

– Efficiency The algorithms are efficient in relative to algorithms that traverse the
complete search space.

– Number of parameters The algorithms do not have parameters, but they are
affected by the parameters of the clustering models.

– Parameter sensitivity The algorithms are sensitive to the parameters of their
clustering models.

Statistical significant subspace clustering (Definition 20) The statistically sig-
nificant subspace clusters are mined using a centroid based greedy algorithm, known
as STATPC (Moise and Sander 2008). Each object o is taken as a centroid. For an attri-
bute a, if the distribution of the value of o and its neighboring values deviates from
the values expected under the assumption of uniform distribution (to a statistically
significant degree), we denote attribute a as a signaled attribute of o.

The centroid o on its set of signaled attributes is taken as a subspace cluster, and
objects that are closest to the subspace cluster on the set of signaled attributes are iter-
atively added to the cluster. Let Rlocal be a sequence of subspace clusters, with each
cluster obtained from an iteration on centroid o. A locally optimal subspace cluster
is then selected from Rlocal , such that it can explain or induce (cf. Assumption 1) all
subspace clusters in Rlocal .

Each centroid o will have a locally optimal subspace cluster, and these locally opti-
mal subspace clusters are randomly added into a set Rreduced , until all objects are
involved in one of the locally optimal subspace clusters in Rreduced .

In the last phase, subspace clusters from Rreduced is greedily and iteratively removed
and added to a set M , until M is able to explain Rreduced . The final set of M is taken
as the set of statistical significant subspace clusters.

Properties of the algorithm:

– Complete result The completeness is not guaranteed as there is no exhaustive
traversal on the search space of the data.

– Stable result Its result is unstable since subspace clusters are randomly added to
the set Rlocal

– Efficiency The algorithms are efficient in relative to algorithms that traverse the
complete search space.

– Number of parameters There is a significance level to set, which is used in
mining the signaled attributes. There is also a tuning parameter δ to set, which
is the distance constraint used to determine the neighboring values of centroid o
when finding the signaled attributes.

– Parameter sensitivity The sensitivity of the significance level for the signaled
attributes is tested and a default significance level is chosen (Moise and Sander
2008). However, δ is chosen heuristically, and no experiments are conducted to
test its sensitivity.

Correlated subspace clustering (Definition 22) In correlated subspace clustering
(Sim et al. 2010a), pairs of values whose correlation information are significantly high
(in statistical sense) are mined from the dataset, and these pairs of values are considered
as seeds (building blocks) to build the correlated subspace clusters. The significance
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of the correlation information of a pair of value is based on its p-value; a pair of values
is considered significant, if the p-value of its correlation information is lower than a
default significance level α, under the assumption that the correlation information is
gamma distributed.

Each seed is taken as a centroid, and for each centroid, other seeds are greedily and
iteratively added to it to create a subspace cluster. A seed is added to the subspace
cluster if it leads to an increase of correlation information of the subspace cluster. This
iterative addition continues until there is no more increase of correlation information
of the subspace cluster.

Properties of the algorithm:

– Complete result The completeness is not guaranteed as the algorithm is greedy
based, and only a portion of the values are used in the mining of the clusters.

– Stable result During an extension of a subspace cluster, if there are more than
one seeds which give the highest correlation information increase to the cluster,
the algorithm will randomly select one of the seeds for the extension. Hence, the
result can be unstable.

– Efficiency The algorithm is efficient in relative to algorithms that traverse the
complete search space. The algorithm may not be scalable to large datasets as
it is computationally intensive; kernel density estimation is used to calculate the
probability and the correlation information formula is a series of summation cal-
culations.

– Number of parameters Unlike other subspace clustering methods, thresholds
are not needed to determine if the correlation information of a subspace cluster is
high. The algorithm has a parameter to set, which is the significance level α.

– Parameter sensitivity The default significance level is shown to be parameter-
insensitive in the experiments in (Sim et al. 2010a).

6.4 Hybrid algorithm

The hybrid algorithm combines different techniques to mine subspace clusters, in such
a way that the strengths of each technique is utilized to maximize the efficiency of the
algorithm.

Actionable subspace clustering (Definition 23) Algorithm MASC is a cen-
troid based algorithm that uses a hybrid of optimization and frequent pattern mining
methods to mine actionable subspace clusters (Sim et al. 2010b).

Let P = {po1a, . . . , po|O|a} be the set of weights indicating if the objects should
be part of a cluster containing centroid c, on attribute a (cf. Eq. 13). The optimal set
of weights P is calculated by using the augmented Lagrangian multiplier method to
optimize the objective function in Eq. 13.

After obtaining the optimal set of weights P , a heuristic method is used to deter-
mine a threshold to binarize the weights, such that weights that are above the threshold
are set to ‘1’ and the others as ‘0’. This procedure of optimization and binarization is
repeated for each attribute a ∈ A to obtain a binary matrix O × A. Maximal biclique
subgraphs are then mined from this binary matrix, where each subgraph corresponds
to an actionable subspace cluster.
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Properties of the algorithm:

– Complete result The algorithm does not mine all actionable subspace clusters of
the dataset. It only guarantees the result is complete with respect to the centroid.

– Stable result In (Sim et al. 2010b), Algorithm BCLM is used for the optimization,
which produces stable results if the optimization problem is well conditioned, and
condition of the problem is dependent on the data. The user can check if the prob-
lem is well conditioned, by making small perturbations to the data and see if the
obtained results are similar.

– Efficiency The efficiency of the algorithm MASC is dependent on the optimi-
zation algorithm and graph mining algorithm used. The number of centroids and
the number of attributes also determine the efficiency of MASC, as both numbers
determine the number of iterations in MASC.

– Number of parameters The algorithm BCLM requires setting of four tuning
parameters. Besides having to set parameters, the centroids have to be selected
by the user too. Unless the user has the domain knowledge to select good quality
centroids, selecting the right centroids can be difficult. For user without domain
knowledge, the user is given the option of selecting centroids that have high aver-
age utility.

– Parameter sensitivity The default settings of algorithm BCLM are shown to
be insensitive (Sim et al. 2010b; Nocedal and Wright 2006) in well conditioned
optimization problems. Using an objective function to measure the goodness of
the clusters is more robust to noise, since small changes in the dataset should not
drastically reduce the goodness of the clusters.

6.5 Summary

Table 5 presents the desired properties of the subspace clustering algorithms. For the
number of algorithm parameters, we do not consider parameters that can be both
cluster and algorithm parameters.

7 Open problems

We discuss important open problems that have the potential to be future research areas
of enhanced subspace clustering.

7.1 Towards tuning parameter-light and tuning parameter-insensitive mining

As mentioned in Sect. 2.3.1, setting tuning parameters is usually a ‘guessing game’, as
most of the parameters are non-meaningful and non-intuitive to the user. Thus, these
tuning parameters are usually set upon the biased assumptions of the user, resulting
in highly skewed clusters.

A possible solution is to set the tuning parameters such that the run time of the
algorithm is fast or the size of the result is small. However, setting the parameters to
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Table 5 A summary of the desired properties of the subspace clustering algorithm

Algorithm Complete
result

Stable result Up-to-date
clustering

Number of
parameters

Parameter-
insensitive

Grid based subspace
cluster

√ √
0

Density based
subspace cluster

√ √
0

Window based
subspace cluster

√ √
0

Binary 3D subspace
cluster

√ √
0

Dense 3D subspace
cluster

√ √
0

Coherent gene cluster
√ √

0

Tricluster
√ √

0

Quasi-biclique
√ √

0

Categorical subspace
cluster

√ √
0

Bayesian overlapping
subspace cluster

√ √
1

Subspace cluster for
uncertain data

0

Subspace α-cluster
√ √ √

1

Entropy based
subspace

√ √
0

Interesting subspace
√ √

0

Relevance model
√

0

Orthogonal model 0

Statistical significant
subspace cluster

2

Correlated subspace
cluster

1
√

Constraint based
subspace cluster

√ √
0

Actionable subspace
cluster

√
4

√

Twofold cluster
√ √

0

suit the algorithm only serves to fulfill the mechanism of the algorithm, and not really
extracting useful information from the data.

There is a raising interest in parameter-light and parameter-insensitive mining from
the subspace clustering community recently, such as those described in Sect. 5.2, where
they mitigate the problem of parameter-sensitivity by making statistical assumptions
on the data distribution or using heuristics in their clustering.

In the other research domains, there are works (Faloutsos and Megalooikonomou
2007; Keogh et al. 2004) which advocate the use of compression theory such as Mini-
mum Description Length (MDL) and Kolmogorov complexity to achieve
parameter-free data mining. Perhaps, the same can be achieved in subspace clustering.
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7.2 Statistical assumption-free mining

To overcome the problem of parameter-sensitive mining, some approaches such as
the Bayesian overlapping clustering (Definition 16), statistical significant subspace
clustering (Definition 20) and subspace clustering for uncertain data (Definition 17)
assume that the data and the clusters are generated by statistical models. The clustering
problem will translate to a problem of fitting the data and the clusters to the assumed
statistical model, and estimating the parameters of the model. Hence, the clusters are
described by the statistical model with the estimated parameters, and are not clusters
that satisfy the parameters set by the user.

This approach is theoretically solid, but in order to be effective, the assumption of
the statistical model on the data and clusters must be correct, and this assumption may
become another ‘guessing game’, as we may not know the true distribution of the data.
The perils of assuming statistical models in solving problems have being raised by
Breiman (2001). In a nutshell, Breiman proposed that real-world data are generated
by complex forces of nature and statistical models may be poor emulation of nature.
Even if a model is fitted to a data, the discovered clusters are based on the model’s
mechanism and not on the nature’s mechanism.

Färber et al. (2010) also discussed about the imperfections of the usage of models
(including statistical models) in clustering. Let us assume that the true model of the
data is known, and clusters that satisfy the model are found. However, the original
purpose of clustering is to gain unknown and interesting knowledge from the data,
and clusters that satisfy the model do not conform to this purpose. Moreover, there are
no established ways to evaluate the usefulness of clusters.

7.3 Semi-supervised mining

Semi-supervised mining is about using additional information such as constraints or
utility to improve the algorithm’s efficiency or improving the clustering results. With
the proliferation of data in recent times, more can be done in this area. An interesting
technique that can be explored is transfer learning (Pan and Yang 2010), which has
been successfully applied in co-clustering (known as self-taught clustering) (Dai et al.
2008). Given an auxiliary dataset, a target dataset and a set of common attributes, self-
taught clustering uses the auxiliary dataset to improve the clustering results on the
target dataset, by finding clusters in both datasets which share the common subspaces.
Likewise in subspace clustering, we can transfer knowledge from auxiliary data to aid
in the subspace clustering of target data.

7.4 Unified framework for subspace clustering

Many variations of subspace clusters have been proposed to deal with various types
of data and to solve different problems. The current paradigm to solve subspace
clustering problem is to first define the clusters of interest and their properties, and
then develop an algorithm that can exploit the properties of the clusters (e.g. anti-
monotonicity) to efficiently mine them. Hence, the cluster definition and its algorithm
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are closely intertwined, and Kriegel et al. (2009) even identified some extreme approaches
where the clusters are defined to match the algorithms.

Based on the current paradigm, extending existing definitions of 2D subspace clus-
ter to 3D, or creating new definitions of subspace cluster, will result in new algorithms
developed specifically for each cluster definition. It is not possible to simply take a new
cluster definition and plug it into any of the existing algorithms to mine the desired
clusters. However, this laborious process can be avoided, if the following problem
is solved: “Is there a paradigm such that existing and new cluster definitions can be
solved by a unifying algorithm?”.

This question is pondered upon by Faloutsos and Megalooikonomou (2007). They
argued that data mining, including clustering, are related to compression and Kol-
mogorov complexity. Calculating the optimal compression, which involves estimat-
ing the Kolmogorov complexity, translates to finding the optimal clusters. However,
Kolmogorov complexity is undecidable, which means that the unceasing development
of new algorithms for new data mining tasks is a necessity. Faloutsos and Megalooik-
onomou concluded that data mining is an art, where the goal is to find better models
or patterns that fit the datasets. Therefore, it remains to be seen whether a unifying
framework for subspace clustering is possible.

7.5 Post-processing of subspace clusters

As mentioned earlier, most of the research on subspace clustering are focused on
defining the subspace clusters and how to efficiently mine them. The clusters are
information extracted from the data, but not knowledge that is useful to the users. To
convert information to knowledge, post-processing of the clusters is needed. Examples
of post-processing techniques include limiting the number of clusters, organizing the
clusters to explore the relations between them, or deriving models that represent the
results. These proposed techniques are still in their infancy and much more possibilities
can still be explored.

On limiting the number of clusters, it is done to prevent the user from being over-
whelmed by the result and to allow easy analysis of the result. Mining significant
subspace clusters is one of the approaches proposed to solve this. Several definitions
of significance are defined by the different clustering approaches, but there is no uni-
versally accepted definition. Moreover, it is still possible that a large number of clusters
can still be generated as long as they satisfy the significant criterion of the clustering
approaches.

On organizing the clusters, Müller et al. (2008) developed a system known as Mor-
pheus, which provides visualization and interactive exploration of subspace clusters.
This can be a way to manually extract knowledge from the clusters, provided that
the number of clusters is small. Achtert et al proposed arranging the projected clus-
ters (Achtert et al. 2006a) and density based subspace clusters (Achtert et al. 2007)
into a hierarchical structure to explore the relations between clusters. The clusters are
arranged in levels, with each level representing the attributes’ size of the cluster. An
edge exists between two clusters if the objects of one of the cluster are contained in
the other cluster. Organizing the clusters in hierarchical structure is a simple way to
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explore the clusters’ relations, but the hierarchical structure may become too messy
when there are too many clusters.

On deriving models to represent the results, Achtert et al. (2006b) proposed deriving
quantitative models for correlation clusters, to explain the linear dependencies within
a correlation cluster. This concept can be bought to subspace clustering, where model
of the subspace clustering results are derived to provide a summary of the results.
The user will then have a general understanding of the results before delving into the
details of each cluster.

8 Conclusion

Research in subspace clustering has progressed much since the pioneer paper by
Agrawal et al. (1998). The original subspace clustering focuses on mining clusters
from high-dimensional dataset, where objects in a cluster are closed together on a
subspace of the dataset. In recent years, due to the proliferation of data and advance-
ment of data collection, and the necessity to solve more complex and demanding tasks,
the research trend has shifted from basic subspace clustering to enhanced subspace
clustering. Enhanced subspace clustering focuses on two aspects: (1) handling com-
plex data such as 3D data, categorical data, stream data or noisy data, and (2) improving
the clustering results. In this survey, we presented the clustering problems, the clus-
ter definitions and algorithms of enhanced subspace clustering. We also described
the basic subspace clustering, the related high-dimensional clustering techniques, and
explained how they are related. Research in subspace clustering has come a long way,
but it is still a young and exciting area to work on, notably with the discussed open
problems.
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