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Computational Methods for
Sparse Solution of Linear
Inverse Problems

In many engineering areas, such as signal processing, practical results can be

obtained by identifying approaches that yield the greatest quality improvement,

or by selecting the most suitable computation methods.

By JoerL A. TRoPP, Member IEEE, AND STEPHEN J. WRIGHT

ABSTRACT | The goal of the sparse approximation problem
is to approximate a target signal using a linear combination
of a few elementary signals drawn from a fixed collection.
This paper surveys the major practical algorithms for sparse
approximation. Specific attention is paid to computational
issues, to the circumstances in which individual methods tend
to perform well, and to the theoretical guarantees available.
Many fundamental questions in electrical engineering, statis-
tics, and applied mathematics can be posed as sparse
approximation problems, making these algorithms versatile
and relevant to a plethora of applications.

KEYWORDS | Compressed sensing; convex optimization; match-
ing pursuit; sparse approximation

I. INTRODUCTION

Linear inverse problems arise throughout engineering and
the mathematical sciences. In most applications, these
problems are ill-conditioned or underdetermined, so one
must apply additional regularizing constraints in order to
obtain interesting or useful solutions. Over the last two
decades, sparsity constraints have emerged as a fundamen-
tal type of regularizer. This approach seeks an approximate
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solution to a linear system while requiring that the un-
known has few nonzero entries relative to its dimension

Find sparse x such that ®x~u

where u is a target signal and ® is a known matrix.
Generically, this formulation is referred to as sparse
approximation [1]. These problems arise in many areas,
including statistics, signal processing, machine learning,
coding theory, and approximation theory. Compressive
sampling refers to a specific type of sparse approximation
problem first studied in [2] and [3].

Tykhonov regularization, the classical device for
solving linear inverse problems, controls the energy (i.e.,
the Euclidean norm) of the unknown vector. This approach
leads to a linear least squares problem whose solution is
generally nonsparse. To obtain sparse solutions, we must
develop more sophisticated algorithms and often commit
more computational resources. The effort pays off. Recent
research has demonstrated that, in many cases of interest,
there are algorithms that can find good solutions to large
sparse approximation problems in reasonable time.

In this paper, we give an overview of algorithms for
sparse approximation, describing their computational
requirements and the relationships between them. We
also discuss the types of problems for which each method is
most effective in practice. Finally, we sketch the theoretical
results that justify the application of these algorithms.
Although low-rank regularization also falls within the
sparse approximation framework, the algorithms we
describe do not apply directly to this class of problems.

Section I-A describes “ideal” formulations of sparse
approximation problems and some common features of
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algorithms that attempt to solve these problems. Section II
provides additional detail about greedy pursuit methods.
Section III presents formulations based on convex prog-
ramming and algorithms for solving these optimization
problems.

A. Formulations
Suppose that ® € R
have unit Euclidean norm: |||, =1 for j=1,2,...,N.

XN . .
™Y is a real matrix whose columns

(The normalization does not compromise generality.) This
matrix is often referred to as a dictionary. The columns of
the matrix are “entries” in the dictionary, and a column
submatrix is called a subdictionary.

The counting function | - ||, : RY — R returns the
number of nonzero components in its argument. We say
that a vector x is s-sparse when [|x||, <s. When u = ®x,
we refer to x as a representation of the signal u with respect
to the dictionary.

In practice, signals tend to be compressible, rather than
sparse. Mathematically, a compressible signal has a repre-
sentation whose entries decay rapidly when sorted in order
of decreasing magnitude. Compressible signals are well
approximated by sparse signals, so the sparse approxi-
mation framework applies to this class. In practice, it is
usually more challenging to identify approximate repre-
sentations of compressible signals than of sparse signals.

The most basic problem we consider is to produce a
maximally sparse representation of an observed signal u

min ||x||, subject to Bx = u. )
X

One natural variation is to relax the equality constraint to
allow some error tolerance € > 0, in case the observed
signal is contaminated with noise

min ||x||, subjectto || ®x—u|, <e. (2)
X

It is most common to measure the prediction—observation
discrepancy with the Euclidean norm, but other loss
functions may also be appropriate.

The elements of (2) can be combined in several ways to
obtain related problems. For example, we can seek the
minimal error possible at a given level of sparsity s > 1

min ||®x — u||, subjectto |lx||, <s. 3)
X

We can also use a parameter A > 0 to balance the twin
objectives of minimizing both error and sparsity

o1
min—[|@x — a5 + Allx]lo- (4)

If there are no restrictions on the dictionary ® and the
signal u, then sparse approximation is at least as hard as a
general constraint satisfaction problem. Indeed, for fixed
constants C, K > 1, it is NP-hard to produce a (Cs)-sparse
approximation whose error lies within a factor K of the
minimal s-term approximation error [4, Sec. 0.8.2].

Nevertheless, over the past decade, researchers have
identified many interesting classes of sparse approxima-
tion problems that submit to computationally tractable
algorithms. These striking results help to explain why
sparse approximation has been such an important and
popular topic of research in recent years.

In practice, sparse approximation algorithms tend to be
slow unless the dictionary ® admits a fast matrix—vector
multiply. Let us mention two classes of sparse approxima-
tion problems where this property holds. First, many
naturally occurring signals are compressible with respect
to dictionaries constructed using principles of harmonic
analysis [5] (e.g., wavelet coefficients of natural images).
This type of structured dictionary often comes with a fast
transformation algorithm. Second, in compressive sam-
pling, we typically view @ as the product of a random
observation matrix and a fixed orthogonal matrix that
determines a basis in which the signal is sparse. Again, fast
multiplication is possible when both the observation
matrix and sparsity basis are structured.

Recently, there have been substantial efforts to
incorporate more sophisticated signal constraints into
sparsity models. In particular, Baraniuk et al. have studied
model-based compressive sampling algorithms, which use
additional information such as the tree structure of wavelet
coefficients to guide reconstruction of signals [6].

B. Major Algorithmic Approaches

There are at least five major classes of computational

techniques for solving sparse approximation problems.

1) Greedy pursuit. Iteratively refine a sparse solu-
tion by successively identifying one or more
components that yield the greatest improvement
in quality [7].

2) Convex relaxation. Replace the combinatorial
problem with a convex optimization problem.
Solve the convex program with algorithms that
exploit the problem structure [1].

3) Bayesian framework. Assume a prior distribution
for the unknown coefficients that favors sparsity.
Develop a maximum a posteriori estimator that
incorporates the observation. Identify a region of
significant posterior mass [8] or average over
most-probable models [9].

4) Nonconvex optimization. Relax the £, problem
to a related nonconvex problem and attempt to
identify a stationary point [10].

5) Brute force. Search through all possible support
sets, possibly using cutting-plane methods to re-
duce the number of possibilities [11, Sec. 3.7-3.8].
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This paper focuses on greedy pursuits and convex
optimization. These two approaches are computationally
practical and lead to provably correct solutions under well-
defined conditions. Bayesian methods and nonconvex
optimization are based on sound principles, but they do
not currently offer theoretical guarantees. Brute force is, of
course, algorithmically correct, but it remains plausible
only for small-scale problems.

Recently, we have also seen interest in heuristic algo-
rithms based on belief-propagation and message-passing
techniques developed in the graphical models and coding
theory communities [12], [13].

C. Verifying Correctness

Researchers have identified several tools that can be
used to prove that sparse approximation algorithms pro-
duce optimal solutions to sparse approximation problems.
These tools also provide insight into the efficiency of
computational algorithms, so the theoretical background
merits a summary.

The uniqueness of sparse representations is equivalent
to an algebraic condition on submatrices of ®. Suppose a
signal u has two different s-sparse representations x; and
X;. Clearly

u=>ox;=dx, = Px;—x;)=0.

In other words, ® maps a nontrivial (2s)-sparse signal to
zero. It follows that each s-sparse representation is
unique if and only if each (2s)-column submatrix of ® is
injective.

To ensure that sparse approximation is computationally
tractable, we need stronger assumptions on ®. Not only
should sparse signals be uniquely determined, but they
should be stably determined. Consider a signal perturba-
tion Au and an s-sparse coefficient perturbation Ax,
related by Au = ®(Ax). Stability requires that ||Ax],
and ||Aul|, are comparable.

This property is commonly imposed by fiat. We say that
the matrix @ satisfies the restricted isometry property
(RIP) of order K with constant § = dg < 1 if

lbelly < K = (1= 6)llxll; < | @x]l; < (1 +8)llxll3. (5)

For sparse approximation, we hope (5) holds for large K.
This concept was introduced in the important paper [14];
some refinements appear in [15].

The RIP can be verified using the coherence statistic of
the matrix ®, which is defined as

p= rgg}‘@p,-ﬂp&’-
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An elementary argument [16] via Gershgorin’s circle
theorem establishes that the RIP constant 6x < p(K — 1).
In signal processing applications, it is common that
] m’l/z, so we have nontrivial RIP bounds for
K ~ y/m. Unfortunately, no known deterministic matrix
yields a substantially better RIP. Early references for
coherence include [7] and [17].

Certain random matrices, however, satisfy much
stronger RIP bounds with high probability. For Gaussian
and Bernoulli matrices, RIP holds when K & m/ log(N/m).
For more structured matrices, such as a random section of a
discrete Fourier transform, RIP often holds when
K = m/logP(N) for a small integer p. This fact explains
the benefit of randomness in compressive sampling. Estab-
lishing the RIP for a random matrix requires techniques
more sophisticated than the simple coherence arguments;
see [14] for discussion.

Recently, researchers have observed that sparse matrices
may satisfy a related property, called RIP-1, even when they
do not satisfy (5). RIP-1 can also be used to analyze sparse
approximation algorithms. Details are given in [18].

D. Cross-Cutting Issues

Structural properties of the matrix ¥ have a substantial
impact on the implementation of sparse approximation
algorithms. In most applications of interest, the large size or
lack of sparseness in ® makes it impossible to store this
matrix (or any substantial submatrix) explicitly in computer
memory. Often, however, matrix—vector products involving
® and ®” can be performed efficiently. For example, the
cost of these products is O(N log N) when @® is constructed
from Fourier or wavelet bases. For algorithms that solve
least squares problems, a fast multiply is particularly impor-
tant because it allows us to use iterative methods such as
LSQR or conjugate gradient (CG). In fact, all the algorithms
discussed below can be implemented in a way that requires
access to ® only through matrix—vector products.

Spectral properties of subdictionaries, such as those
encapsulated in (5), have additional implications for the
computational cost of sparse approximation algorithms.
Some methods exhibit fast linear asymptotic convergence
because the RIP ensures that the subdictionaries encoun-
tered during execution have superb conditioning. Other
approaches (for example, interior-point methods) are less
sensitive to spectral properties, so they become more
competitive when the RIP is less pronounced or the target
signal is not particularly sparse.

It is worth mentioning here that most algorithmic
papers in sparse reconstruction present computational re-
sults only on synthetic test problems. Test problem col-
lections representative of sparse approximation problems
encountered in practice are crucial to guiding further dev-
elopment of algorithms. A significant effort in this direc-
tion is Sparco [19], a Matlab environment for interfacing
algorithms and constructing test problems that also in-
cludes a variety of problems gathered from the literature.
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IT. PURSUIT METHODS

A pursuit method for sparse approximation is a greedy
approach that iteratively refines the current estimate for
the coefficient vector x by modifying one or several
coefficients chosen to yield a substantial improvement in
approximating the signal. We begin by describing the
simplest effective greedy algorithm, orthogonal matching
pursuit (OMP), and summarizing its theoretical guaran-
tees. Afterward, we outline a more sophisticated class of
modern pursuit techniques that has shown promise for
compressive sampling problems. We briefly discuss
iterative thresholding methods, and conclude with some
general comments about the role of greedy algorithms in
sparse approximation.

A. Orthogonal Matching Pursuit

OMTP is one of the earliest methods for sparse approxi-
mation. Basic references for this method in the signal pro-
cessing literature are [20] and [21], but the idea can be traced
to 1950s work on variable selection in regression [11].

Fig. 1 contains a mathematical description of OMP.
The symbol ®q denotes the subdictionary indexed by a
subset 2 of {1,2,...,N}.

In a typical implementation of OMP, the identification
step is the most expensive part of the computation. The
most direct approach computes the maximum inner pro-
duct via the matrix-vector multiplication ®*r),_;, which
costs O(mN) for an unstructured dense matrix. Some au-
thors have proposed using nearest neighbor data structures
to perform the identification query more efficiently [22].
In certain applications, such as projection pursuit regres-
sion, the “columns” of ® are indexed by a continuous

« Input. A signal w € R™, a matrix ® € R™*¥V
« Output. A sparse coefficient vector ¢ € RY

1) Inmitialize. Set the index set 0y = 0, the residual
o = u, and put the counter k = 1.

2) Identify. Find a column n;, of ® that is most strongly
correlated with the residual:

ng € argmax, |[(ry_1,¥n)| and
Q= Q1 U {ne}.
3) Estimate. Find the best coefficients for approximat-
ing the signal with the columns chosen so far.
xp, = argminy ||lu — o, yl|2-
4) Iterate. Update the residual:
Ty = U — ‘I’gl,ﬂwk.

Increment k. Repeat (2)—(4) until stopping criterion
holds.

5) Output. Return the vector & with components
z(n) = zk(n) for n € O and x(n) = 0 otherwise.

Fig. 1. orthogonal matching pursuit.

parameter, and identification can be posed as a low-
dimensional optimization problem [23].

The estimation step requires the solution of a least
squares problem. The most common technique is to main-
tain a QR factorization of ®,, which has a marginal cost
of O(mk) in the kth iteration. The new residual 7y, is a by-
product of the least squares problem, so it requires no
extra computation.

There are several natural stopping criteria.

e Halt after a fixed number of iterations: k = s.

e Halt when the residual has small magnitude:

Il < <.
e Halt when no column explains a significant
amount of energy in the residual: ||®*r ;|| <e.
These criteria can all be implemented at minimal cost.

Many related greedy pursuit algorithms have been
proposed in the literature; we cannot do them all justice
here. Some particularly noteworthy variants include
matching pursuit [7], the relaxed greedy algorithm [24],
and the ¢;-penalized greedy algorithm [25].

B. Guarantees for Simple Pursuits

OMP produces the residual r, =0 after m steps
(provided that the dictionary can represent the signal u
exactly), but this representation hardly qualifies as sparse.
Classical analyses of greedy pursuit focus instead on the
rate of convergence.

Greedy pursuits often converge linearly with a rate that
depends on how well the dictionary covers the sphere [7].
For example, OMP offers the estimate

k/2
ri 2

2§(1_£)2)

|

where
0= inf”v”2:1 Sllpy.|<va LPn> ‘

(See [21, Sec. 3] for details.) Unfortunately, the covering
parameter g is typically O(m~'/?) unless the number N of
atoms is huge, so this estimate has limited interest.

A second type of result demonstrates that the rate of
convergence depends on how well the dictionary expresses
the signal of interest [24, eq. (1.9)]. For example, OMP
offers the estimate

Irell, < k770
where

l|ullp = inf{||x||1 U= <I>x}.
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The dictionary norm | - || is typically small when its
argument has a good sparse approximation. For further
improvements on this estimate, see [26]. This bound is
usually superior to the exponential rate estimate above, but
it can be disappointing for signals with excellent sparse
approximations.

Subsequent work established that greedy pursuit pro-
duces near-optimal sparse approximations with respect to in-
coherent dictionaries [22], [27]. For example, if 3pk < 1, then

[rell, < V1t 6kH" - ai”z

where aj; denotes the best £, approximation of u as a linear
combination of k columns from ®. See [28]-[30] for
refinements.

Finally, when @ is sufficiently random, OMP provably
recovers s-sparse signals when s < m/(2logN) and the
parameters are sufficiently large [31], [32].

C. Contemporary Pursuit Methods

For many applications, OMP does not offer adequate
performance, so researchers have developed more sophis-
ticated pursuit methods that work better in practice and
yield essentially optimal theoretical guarantees. These
techniques depend on several enhancements to the basic
greedy framework:

1) selecting multiple columns per iteration;

2) pruning the set of active columns at each step;

3) solving the least squares problems iteratively;

4) theoretical analysis using the RIP bound (5).
Although modern pursuit methods were developed specif-
ically for compressive sampling problems, they also offer
attractive guarantees for sparse approximation.

There are many early algorithms that incorporate some
of these features. For example, stagewise orthogonal
matching pursuit (StOMP) [33] selects multiple columns
at each step. The regularized orthogonal matching pursuit
algorithm [34], [35] was the first greedy technique whose
analysis was supported by a RIP bound (5). For historical
details, we refer the reader to the discussion in [36, Sec. 7].

Compressive sampling matching pursuit (CoSaMP)
[36] was the first algorithm to assemble these ideas to
obtain essentially optimal performance guarantees. Dai
and Milenkovic describe a similar algorithm, called sub-
space pursuit, with equivalent guarantees [37]. Other
natural variants are described in [38, App. A.2]. Because of
space constraints, we focus on the CoSaMP approach.

Fig. 2 describes the basic CoSaMP procedure. The
notation [x] denotes the restriction of a vector x to the
r components largest in magnitude (ties broken lexico-
graphically), while supp(x) denotes the support of the
vector X, i.e., the set of nonzero components. The natural
value for the tuning parameter is o =1, but empirical
refinement may be valuable in applications [39].
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« Input. A signal u € R™, a matrix ® € R™*¥, target
sparsity s, tuning parameter .
« Output. An s-sparse coefficient vector = € RV

1) Inmitialize. Set the initial coefficient vector &y = 0
and the residual ro = w. Let £ = 1.

2) Identify. Find as columns of & that are most
strongly correlated with the residual:

Q) € arg min|p|<as ZneT [{(rr—1,Pn)|-
3) Merge. Put the old and new columns into one set:
T = supp(@—1) UQ

4) Estimate. Find the best coefficients for approximat-
ing the residual with these columns:

yr = argminy ||re—1 — ®7y|l2
5) Prune. Retain the s largest coefficients:
zi, = [yls.
6) Iterate. Update the residual:
ry = u — Pxg.

Repeat (2)—(5) until stopping criterion holds.
7) Output. Return « = xy.

Fig. 2. compressive sampling matching pursuit.

Both the practical performance and theoretical analysis
of CoSaMP require the dictionary @ to satisfy the RIP (5)
of order 2s with constant 0, < 1. Of course, these
methods can be applied without the RIP, but the behavior
is unpredictable. A heuristic for identifying the maximum
sparsity level s is to require that s < m/(21log(1+ N/s)).

Under the RIP hypothesis, each iteration of CoSaMP
reduces the approximation error by a constant factor until
it approaches its minimal value. To be specific, suppose
that the signal u satisfies

u==>ex"+e (6)

for unknown coefficient vector x* and noise term e. If we
run the algorithm for a sufficient number of iterations, the
output x satisfies

et = xell, < €572 et — 7],

A Clel, @

where C is a constant. The form of this error bound is
optimal [40].

Stopping criteria are tailored to the signals of interest.
For example, when the coefficient vector x* is compressible,
the algorithm requires only O(log N) iterations. Under the
RIP hypothesis, each iteration requires a constant number
of multiplications with ® and ®” to solve the least squares
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problem. Thus, the total running time is O(Nlog® N) for
a structured dictionary and a compressible signal.

In practice, CoSaMP is faster and more effective than
OMP for compressive sampling problems, except perhaps
in the ultrasparse regime where the number of nonzeros
in the representation is very small. CoSaMP is faster but
usually less effective than algorithms based on convex
programming.

D. Iterative Thresholding

Modern pursuit methods are closely related to iterative
thresholding algorithms, which have been studied ex-
tensively over the last decade. (See [39] for a current
bibliography.) Section III-D describes additional connec-
tions with optimization-based approaches.

Among thresholding approaches, iterative hard thresh-
olding (IHT) is the simplest. It seeks an s-sparse
representation X, of a signal u via the iteration

xon
r, = u— Px;

Xp1 = [+ @1, k>0.

Blumensath and Davies [41] have established that THT
admits an error guarantee of the form (7) under a RIP
hypothesis of the form §,; < 1. For related results on IHT,
see [42]. Garg and Khandekar [43] describe a similar
method, gradient descent with sparsification, and present
an elegant analysis, which is further simplified in [44].

There is empirical evidence that thresholding is
reasonably effective for solving sparse approximation
problems in practice; see, e.g., [45]. On the other hand,
some simulations indicate that simple thresholding tech-
niques behave poorly in the presence of noise [41, Sec. 8].

Very recently, Donoho and Maliki have proposed a
more elaborate method, called two-stage thresholding
(TST) [39]. They describe this approach as a hybrid of
CoSaMP and thresholding, modified with extra tuning
parameters. Their work includes extensive simulations
meant to identify optimal parameter settings for TST. By
construction, these optimally tuned algorithms dominate
related approaches with fewer parameters. The discussion
in [39] focuses on perfectly sparse, random signals, so the
applicability of the approach to signals that are compress-
ible, noisy, or deterministic is unclear.

E. Commentary

Greedy pursuit methods have often been considered
naive, in part because there are contrived examples where
the approach fails spectacularly; see [1, Sec. 2.3.2].
However, recent research has clarified that greedy pursuits
succeed empirically and theoretically in many situations
where convex relaxation works. In fact, the boundary
between greedy methods and convex relaxation methods is

somewhat blurry. The greedy selection technique is closely
related to dual coordinate-ascent algorithms, while certain
methods for convex relaxation, such as least-angle regres-
sion [46] and homotopy [47], use a type of greedy selection
at each iteration. We can make certain general observa-
tions, however. Greedy pursuits, thresholding, and related
methods (such as homotopy) can be quite fast, especially in
the ultrasparse regime. Convex relaxation algorithms are
more effective at solving sparse approximation problems in
awider variety of settings, such as those in which the signal
is not very sparse and heavy observational noise is present.

Greedy techniques have several additional advantages
that are important to recognize. First, when the dictionary
contains a continuum of elements (as in projection pursuit
regression), convex relaxation may lead to an infinite-
dimensional primal problem, while the greedy approach
reduces sparse approximation to a sequence of simple 1-D
optimization problems. Second, greedy techniques can in-
corporate constraints that do not fit naturally into convex
programming formulations. For example, the data stream
community has proposed efficient greedy algorithms for
computing near-optimal histograms and wavelet-packet
approximations from compressive samples [4]. More
recently, it has been shown that CoSaMP can be modified
to enforce tree-like constraints on wavelet coefficients.
Extensions to simultaneous sparse approximation pro-
blems have also been developed [6]. This is an exciting and
important line of work.

At this point, it is not fully clear what role greedy
pursuit algorithms will ultimately play in practice. Never-
theless, this strand of research has led to new tools and
insights for analyzing other types of algorithms for sparse
approximation, including the iterative thresholding and
model-based approaches above.

IIT. OPTIMIZATION

Another fundamental approach to sparse approximation
replaces the combinatorial £, function in the mathematical
programs from Section I-A with the ¢;-norm, yielding
convex optimization problems that admit tractable algo-
rithms. In a concrete sense [48], the £;-norm is the closest
convex function to the ¢, function, so this “relaxation” is
quite natural.

The convex form of the equality-constrained problem

(1) is

min ||x||; subjectto Px=u (8)
X
while the mixed formulation (4) becomes

't
min | @x — ull? + 7l ©)
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Here, 7> 0 is a regularization parameter whose value
governs the sparsity of the solution: large values typically
produce sparser results. It may be difficult to select an
appropriate value for 7 in advance, since it controls the
sparsity indirectly. As a consequence, we often need to
solve (9) repeatedly for different choices of this parameter,
or to trace systematically the path of solutions as 7
decreases toward zero. When 7 > || ®"u||, the solution
of (9)isx =0.

Another variant is the least absolute shrinkage and
selection operator formulation [49], which first arose in
the context of variable selection

min || ®x — u|> subject to ||, <3 (10)
X

The LASSO is equivalent to (9) in the sense that the path
of solutions to (10) parameterized by positive 3 matches
the solution path for (9) as 7 varies. Finally, we note
another common formulation

min ||x||;, subject to || ®x—ul, <e
X

(11)

that explicitly parameterizes the error norm.

A. Guarantees

It has been demonstrated that convex relaxation
methods produce optimal or near-optimal solutions to
sparse approximation problems in a variety of settings.

The earliest results [16], [17], [27] establish that the
equality-constrained problem (8) correctly recovers all
s-sparse signals from an incoherent dictionary provided
that 2ps < 1. In the best case, this bound applies at the
sparsity level s &~ y/m. Subsequent work [29], [50], [51]
showed that the convex programs (9) and (11) can identify
noisy sparse signals in a similar parameter regime.

The results described above are sharp for deterministic
signals, but they can be extended significantly for random
signals that are sparse with respect to an incoherent
dictionary. The paper [52] proves that the equality-
constrained problem (8) can identify random signals,
even when the sparsity level s is approximately m/logm.
Most recently, the paper [53] observed that ideas from [51]
and [54] imply that the convex relaxation (9) can identify
noisy, random sparse signals in a similar parameter regime.

Results from [14] and [55] demonstrate that convex
relaxation succeeds well in the presence of the RIP.
Suppose that signal # and unknown coefficient vector x*
are related as in (6) and that the dictionary ® has RIP
constant d,; < 1. Then, the solution x to (11) verifies

e —x*l, < €572 |lx" — [, + Ce
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for some constant C, provided that ¢ > ||e||,. Compare this
bound with the error estimate (7) for CoSaMP and IHT.

An alternative approach for analyzing convex relaxa-
tion algorithms relies on geometric properties of the
kernel of the dictionary [40], [56]-[58]. Another geomet-
ric method, based on random projections of standard
polytopes, is studied in [59] and [60].

B. Active Set/Pivoting

Pivoting algorithms explicitly trace the path of
solutions as the scalar parameter in (10) ranges across an
interval. These methods exploit the piecewise linearity of
the solution as a function of 3, a consequence of the fact
that the optimality Karush-Kuhn-Tucker (KKT) condi-
tions can be stated as a linear complementarity problem.
By referring to the KKT system, we can quickly identify the
next “breakpoint” on the solution path—the nearest value
of B at which the derivative of the piecewise-linear
function changes.

The homotopy method of [47] follows this approach.
It starts with 3 = 0, where the solution of (10) is x = 0,
and it progressively locates the next largest value of 3
where a component of x switches from a zero to a non-
zero, or vice versa. At each step, the method updates or
downdates a QR factorization of the submatrix of ® that
corresponds to the nonzero components of x. A similar
method [46] is implemented as SolveLasso in the
SparseLab toolbox." Related approaches can be developed
for the formulation (9).

If we limit our attention to values of 3 for which x has
few nonzeros, the active-set/pivoting approach is efficient.
The homotopy method requires about 2s matrix—vector
multiplications by ® or ®7, to identify s nonzeros in x,
together with O(ms?) operations for updating the factor-
ization and performing other linear algebra operations.
This cost is comparable with OMP.

OMP and homotopy are quite similar in that the solu-
tion is altered by systematically adding nonzero compo-
nents to x and updating the solution of a reduced linear
least squares problem. In each case, the criterion for
selecting components involves the inner products between
inactive columns of ® and the residual u — ®x. One
notable difference is that homotopy occasionally allows for
nonzero components of X to return to zero status. See [46]
and [61] for other comparisons.

C. Interior-Point Methods

Interior-point methods were among the first ap-
proaches developed for solving sparse approximation prob-
lems by convex optimization. The early algorithms [1], [62]
apply a primal-dual interior-point framework where the
innermost subproblems are formulated as linear least
squares problems that can be solved with iterative
methods, thus allowing these methods to take advantage

1http:/ /sparselab.stanford.edu.
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of fast matrix—vector multiplications involving ® and ®*.
An implementation is available as pdco and SolveBP in
the SparseLab toolbox.

Other interior-point methods have been proposed
expressly for compressive sampling problems. The paper
[63] describes a primal log-barrier approach for a quadratic
programming reformulation of (9):

1
min§H<I>x—u||§+Tsz subject to —z<x<z.
X,z

The technique relies on a specialized preconditioner that
allows the internal Newton iterations to be completed
efficiently with CG. The method® is implemented as the
code 11 1s. The /-magic package® [64] contains a
primal log-barrier code for the second-order cone formu-
lation (11), which includes the option of solving the
innermost linear system with CG.

In general, interior-point methods are not competitive
with the gradient methods of Section III-D on problems
with very sparse solutions. On the other hand, their per-
formance is insensitive to the sparsity of the solution or the
value of the regularization parameter. Interior-point
methods can be robust in the sense that there are not
many cases of very slow performance or outright failure,
which sometimes occurs with other approaches.

D. Gradient Methods

Gradient-descent methods, also known as first-order
methods, are iterative algorithms for solving (9) in which
the major operation at each iteration is to form the grad-
ient of the least squares term at the current iterate, viz.,
®*(Px;, — u). Many of these methods compute the next
iterate X1 using the rules

x| = argmin(z — x;)" ®* (®x;, — )
4

1
+ 5l = xall; + izl (12a)

X1 =X + (X — x) (12b)

for some choice of scalar parameters oy and 7. Alter-
natively, we can write subproblem (12a) as

2

1
7— <xk —— & (Px; — u))
(673

-
+ —llzfl;- (13)
a

+ . 3
xk (= argmin —
7 2 5

2www.stanford.edu/ ~boyd/I1_ls/.

3Www.ll-magic.org.

« Input. A signal « € R™, a matrix & ¢ R™<V,
regularization parameter 7 > 0, initial estimate xg
of the representation vector.

« Output. Coefficient vector z € RY

1) Inmitialize. Set k = 1.

2) Iterate. Choose «; > 0 and obtain $z from (12a).
If an acceptance test on m,f is not passed, increase
«y, by some factor and repeat.

3) Line Search. Choose 7, € (0,1] and obtain @y
from (12b).

4) Test. If stopping criterion holds, terminate with x =
xp41. Otherwise, set k < k + 1 and go to (2).

Fig. 3. Gradient-descent framework.

Algorithms that compute steps of this type are known by
such labels as operator splitting [65], iterative splitting and
thresholding (IST) [66], fixed-point iteration [67], and
sparse reconstruction via separable approximation (SpaRSA)
[68]. Fig. 3 shows the framework for this class of methods.

Standard convergence results for these methods, e.g.,
[65, Th. 3.4], require that inf, ), > [|®*®||,/2, a tight
restriction that leads to slow convergence in practice. The
more practical variants described in [68] admit smaller
values of ay,, provided that a sufficient decrease in the
objective in (9) occurs over a span of successive iterations.
Some variants use Barzilai-Borwein formulas that select
values of ay, lying in the spectrum of ®*®. When xz fails
the acceptance test in Step 2, the parameter q, is increased
(repeatedly, as necessary) by a constant factor. Step
lengths v, = 1 are used in [67] and [68]. The iterated hard
shrinkage method of [69] sets ci, = 0 in (12) and chooses
Y to do a conditional minimization along the search
direction.

Related approaches include TwIST [70], a variant of
IST that is significantly faster in practice, and which
deviates from the framework of Fig. 3 in that the previous
iterate xj,_; also enters into the step calculation (in the
manner of successive over-relaxation approaches for linear
equations). GPSR [71] is simply a gradient-projection
algorithm for the convex quadratic program obtained by
splitting x into positive and negative parts.

The approaches above tend to work well on sparse
signals when the dictionary ® satisfies the RIP. Often, the
nonzero components of x are identified quickly, after
which the method reduces essentially to an iterative
method for the reduced linear least squares problem in
these components. Because of the RIP, the active sub-
matrix is well conditioned, so these final iterates converge
quickly. In fact, these steps are quite similar to the
estimation step of CoSaMP.

These methods benefit from warm starting, that is, the
work required to identify a solution can be reduced
dramatically when the initial estimate X, in Step 1 is close
to the solution. This property can be used to ameliorate the
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often poor performance of these methods on problems for
which (9) is not particularly sparse or the regularization
parameter 7 is small. Continuation strategies have been
proposed for such cases, in which we solve (9) for a de-
creasing sequence of values of 7, using the approximate
solution for each value as the starting point for the next
subproblem. Continuation can be viewed as a coarse-
grained, approximate variant of the pivoting strategies of
Section III-B, which track individual changes in the active
components of x explicitly. Some continuation methods
are described in [67] and [68]. Though adaptive strategies
for choosing the decreasing sequence of T values have been
proposed, the design of a robust, practical, and theoret-
ically effective continuation algorithm remains an inter-
esting open question.

E. Extensions of Gradient Methods

Second-order information can be used to enhance grad-
ient projection approaches by taking approximate reduced
Newton steps in the subset of components of x that appears
to be nonzero. In some approaches [68], [71], this en-
hancement is made only after the first-order algorithm is
terminated as a means of removing the bias in the for-
mulation (9) introduced by the regularization term. Other
methods [72] apply this technique at intermediate steps of
the algorithm. (A similar approach was proposed for the
related problem of ¢;-regularized logistic regression in
[73].) Iterative methods such as conjugate gradient can be
used to find approximate solutions to the reduced linear
least squares problems. These subproblems are, of course,
closely related to the ones that arise in the greedy pursuit
algorithms of Section II.

The SPG method of [74, Sec. 4] applies a different type
of gradient projection to the formulation (10). This ap-
proach takes steps along the negative gradient of the least
squares objective in (10), with steplength chosen by a
Barzilai-Borwein formula (with backtracking to enforce
sufficient decrease over a reference function value), and
projects the resulting vector onto the constraint set

R. G. Baraniuk, V. Cevher, M. Duarte, and

lx|l; < 8. Since the ultimate goal in [74] is to solve (11)
for a given value of ¢, the approach above is embedded
into a scalar equation solver that identifies the value of 3
for which the solution of (10) coincides with the solution
of (11).

An important recent line of work has involved applying
optimal gradient methods for convex minimization [75]-
[77] to the formulations (9) and (11). These methods have
many variants, but they share the goal of finding an ap-
proximate solution that is as close as possible to the opti-
mal set (as measured by norm-distance or by objective
value) in a given budget of iterations. (By contrast, most
iterative methods for optimization aim to make significant
progress during each individual iteration.) Optimal grad-
ient methods typically generate several concurrent se-
quences of iterates, and they have complex steplength rules
that depend on some prior knowledge, such as the Lipschitz
constant of the gradient. Specific works that apply optimal
gradient methods to sparse approximation include [78]-[80].
These methods may perform better than simple gradient
methods when applied to compressible signals.

We conclude this section by mentioning the dual
formulation of (9)

ming lo|l? —u'c  subjectto —1< Pc<1.
o

(14)

Although this formulation has not been studied exten-
sively, an active-set method was proposed in [81]. This
method solves a sequence of subproblems where a subset
of the constraints (corresponding to a subdictionary) is
enforced. The dual of each subproblem can each be ex-
pressed as a least squares problem over the subdictionary,
where the subdictionaries differ by a single column from
one problem to the next. The connections between this
approach and greedy pursuits are evident. B
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