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Cluster ensemble has proved to be a good alternative when facing cluster analysis problems. It

consists of generating a set of clusterings from the same dataset and combining them into a ¯nal
clustering. The goal of this combination process is to improve the quality of individual data

clusterings. Due to the increasing appearance of new methods, their promising results and the

great number of applications, we consider that it is necessary to make a critical analysis of the
existing techniques and future projections. This paper presents an overview of clustering

ensemble methods that can be very useful for the community of clustering practitioners. The

characteristics of several methods are discussed, which may help in the selection of the most

appropriate one to solve a problem at hand. We also present a taxonomy of these techniques and
illustrate some important applications.
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1. Introduction

Cluster analysis is an essential technique in any ¯eld of research which involves

analyzing or processing multivariate data, such as: data mining, taxonomy, docu-

ment retrieval, image segmentation, pattern classi¯cation, etc. Its goal is to ¯nd the

underlying structure of a dataset following several clustering criteria, speci¯c prop-

erties in the data and di®erent ways of data comparison.

A large variety of clustering algorithms has been proposed: k -Means, EM

(Expectation Maximization), based on spectral graph theory, hierarchical clustering

algorithms like Single-Link, Fuzzy c -Means, etc. (see Refs. 47 and 94). However, as it

is known, there is no clustering method capable of correctly ¯nding the underlying

structure for all data sets.

When we apply a clustering algorithm to a set of objects, it imposes an organ-

ization to the data following an internal criterion, the characteristics of the used

(dis)similarity function and the dataset. Hence, if we have two di®erent clustering

algorithms and we apply them to the same dataset, we can obtain very di®erent

results. But, which is the correct one? How can we evaluate the results? In clustering
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analysis, the evaluation of results is associated to the use of cluster validity indexes

(CVI),11 which are used to measure the quality of clustering results. Nevertheless, the

use of the CVIs is not the de¯nite solution. There is no CVI that impartially

evaluates the results of any clustering algorithm. Thus, we can say that di®erent

solutions obtained by di®erent clustering algorithms can be equally plausible, if there

is no previous knowledge about the best way to evaluate the results. Roughly, we can

assure that for any clustering algorithm there is a CVI that will evaluate satisfac-

torily its results.

The idea of combining di®erent clustering results (cluster ensemble or clustering

aggregation) emerged as an alternative approach for improving the quality of the

results of clustering algorithms. It is based on the success of the combination

of supervised classi¯ers. Given a set of objects, a cluster ensemble method consists of

two principal steps: Generation, which is about the creation of a set of partitionsa of

these objects, and Consensus Function, where a new partition, which is the inte-

gration of all partitions obtained in the generation step, is computed.

In di®erent articles about clustering ensemble, authors have tried to de¯ne a set of

properties that endorses the use of clustering ensemble methods, such as by Fred and

Jain30 and Topchy et al.76 However, which are the properties that should ful¯ll a

clustering ensemble algorithm? There is no agreement about this unanswered

question. On top of it, the veri¯cation of any of these properties in practice is very

di±cult due to the unsupervised nature of the clustering ensemble process. Some of

them are:

. Robustness: The combination process must have better average performance than

the single clustering algorithms.

. Consistency: The result of the combination should be somehow, very similar to all

combined single clustering algorithm results.

. Novelty: Cluster ensembles must allow ¯nding solutions unattainable by single

clustering algorithms.

. Stability: Results with lower sensitivity to noise and outliers.

Properties like these are expected to be present in the results of a clustering

ensemble process. However, the natural organization of data or the ground-truth

cannot be expected as the best result. Moreover, it cannot be said that the clustering

results obtained by a cluster ensemble method is better than those which were

combined. It can only be ensured that the new clustering is a consensus of all the

previous ones, and we can use it instead of any other clustering assuming as a fact

that: the process of fusion could compensate for possible errors in a single clustering

algorithm, and the decision of a group must be more reliable than any individual one.

aIn the literature, most papers tackle the clustering problems as partitions of the representation spaces.

This is not the only problem that we need to face in practice. However, in this paper, we interchangeably

use the terms: partition and clustering.
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This assumption is endorsed by an increasing number of applications of the clus-

tering ensemble methods in di®erent areas.

Over the past years, many clustering ensemble techniques have been proposed,

resulting in new ways to face the problem together with new ¯elds of application for

these techniques. Despite the large number of clustering ensemble methods, there are

only a few papers with the purpose of giving a summary of some of the existing

clustering ensemble techniques, e.g. by Ghaemi et al.31 and Li et al.56 However, we

think that a more general and complete study of the clustering ensemble methods is

still necessary. Besides the presentation of the main methods, the introduction of a

taxonomy of the di®erent tendencies and critical comparisons among the methods is

really important in order to give a practical application to a survey. Thus, due to the

importance that clustering ensembles have gained facing cluster analysis problems

and the amount of articles published on this topic, we have made a critical study of

the di®erent approaches and the existing methods. This paper can be very useful for

the community of clustering practitioners since showing the advantages and dis-

advantages of each method, their implicit assumptions, can help in the selection of

the appropriate clustering ensemble algorithm to solve a problem on hand.

In this paper, we will use the following uniform notation. We denote X ¼
fx1;x2; . . . ;xng the set of objects, where each xi is a tuple of some �-dimensional

feature space �� for all i ¼ 1 � � �n. P ¼ fP1;P2; . . . ;Pmg is a set of partitions, where

each Pi ¼ fC i
1;C

i
2; . . . ;C

i
di
g is a partition of the set of objects X with di clusters. C

i
j

is the jth cluster of the ith partition, for all i ¼ 1; . . . ;m. We also denote as PX the set

of all possible partitions with the set of objects X, (P � PX). The goal of clustering

ensemble methods is to ¯nd a consensus partition P � 2 PX, which better represents

the properties of each partition in P.

The rest of this paper is organized as follows: in Sec. 2 the di®erent clustering

ensemble techniques are presented, making a di®erentiation between the generation

mechanisms (Sec. 2.1) and the consensus functions (Sec. 2.2). Attention has been

mainly paid to the di®erent consensus functions as the fundamental step of any

clustering ensemble method. In Sec. 2.3 some techniques for improving the combi-

nation quality are analyzed. A comparison of the di®erent kinds of clustering

ensemble methods is made in Sec. 2.4. Section 3 presents some applications of

clustering ensemble methods and the conclusions of this research are in Sec. 4.

2. Clustering Ensembles

Every clustering ensemble method is made up of two steps: Generation and Con-

sensus Function (see Fig. 1). The di®erent ways of generation are described in

Sec. 2.1 and in Sec. 2.2 the principal consensus function methods are discussed.

2.1. Generation mechanisms

Generation is the ¯rst step in clustering ensemble methods, in this step the set of

clusterings that will be combined is generated. In a particular problem, it is very
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important to apply an appropriate generation process, because the ¯nal result will be

conditioned by the initial clusterings obtained in this step.

There are clustering ensemble methods like the voting-k -means29 that demand a

well-determined generation process, in this case, all the partitions should be obtained

by applying the k-Means algorithm with di®erent initializations for the number of

clusters parameter. This method uses a big k value (the number of clusters), in order

to obtain complex structure in the consensus partition, from the combination of

small hyper-spherical structures in the single partitions.

However, in a general way, in the generation step there are no constraints about

how the partitions must be obtained. Therefore, in the generation process di®erent

clustering algorithms or the same algorithm with di®erent parameters initialization

can be applied. Even di®erent objects representations, di®erent subsets of objects or

projections of the objects on di®erent subspaces could be used (see Fig. 2).

In the generation step the weak clustering algorithms77 are also used. These al-

gorithms make up a set of clusterings using very simple and fast procedures. Despite

the simplicity of this kind of algorithms, Topchy et al.78 showed that weak clustering

algorithms are capable of producing high quality consensus clusterings in conjunc-

tion with a proper consensus function.

…
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Fig. 1. Diagram of the general process of cluster ensemble.
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Fig. 2. Diagram of the principal clustering ensemble generation mechanisms.
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In a general way, in the generation step, it is advisable to use those clustering

algorithms that can yield more information about the data. It can often be very

di±cult to know a priori which clustering algorithm will be appropriate for a speci¯c

problem. The expert's experience of the problem area could be very useful in these

cases. Besides, if there is no information about the problem, making a diverse cluster

ensemble is recommended, since the more varied the set of partitions is, the more

information for the consensus function is available. This diversity can be obtained by

using the di®erent generation mechanism presented in Fig. 2.

2.2. Consensus functions

The consensus function is the main step in any clustering ensemble algorithm.

Precisely, the great challenge in clustering ensemble is the de¯nition of an appro-

priate consensus function, capable of improving the results of single clustering al-

gorithms. In this step, the ¯nal data partition or consensus partition P �, which is the

result of any clustering ensemble algorithm, is obtained. However, the consensus

among a set of clusterings is not obtained in the same way in all cases. There are two

main consensus function approaches: objects co-occurrence and median partition.

In the ¯rst approach, the idea is to determine which must be the cluster label

associated to each object in the consensus partition. To do that, it is analyzed how

many times an object belongs to one cluster or how many times two objects belong

together to the same cluster. The consensus is obtained through a voting process

among the objects. Somehow, each object should vote for the cluster to which it will

belong in the consensus partition. This is the case, for example, of Relabeling and

Voting (Sec. 2.2.1) and Co-association Matrix (Sec. 2.2.2) based methods.

In the second consensus function approach, the consensus partition is obtained by

the solution of an optimization problem, the problem of ¯nding the median partition

with respect to the cluster ensemble. Formally, the median partition is de¯ned as:

P � ¼ argmax
P2PX

Xm
j¼1

�ðP ;PjÞ ð1Þ

where � is a similarity measure between partitions. The median partition is de¯ned

as the partition that maximizes the similarity with all partitions in the cluster

ensemble.b For example, Non-Negative Matrix Factorization (Sec. 2.2.9) and Kernel

(Sec. 2.2.10) based methods follow this approach.

The ¯rst mathematical treatment of the median partition problem (1) was pre-

sented by R�egnier69 (see Ref. 25 for historical details). From this moment on, several

studies about the median partition problem have been made. However, the main

theoretical results have been obtained for the particular case when � is the symmetric

di®erence distance (or the Mirkin distance).63 Krivanek and Moravek52 and also

Wakabayashi88 proved by di®erent ways that the median partition problem (1) with

bThe median partition can be equivalently de¯ned by minimizing the dissimilarity with respect to the

cluster ensemble in the case that � is a dissimilarity measure between partitions.
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the Mirkin distance is NP-hard. This proof was given for the case where there is a

variable number of partitions m in the cluster ensemble. However, it is not known

whether it is a NP-hard problem for any particular m value.25 For m ¼ 1 or m ¼ 2

the solution of the problem is trivial, but for m > 2 nothing is known about the

computational complexity.

The median partition problem with other (dis)similarity measures has not

been properly studied. The complexity of the general problem is dependent on the

(dis)similarity measure used in its de¯nition. Despite the fact that the median par-

tition problem has been proved to be NP-hard when it is de¯ned with the Mirkin

distance, we can ¯nd a (dis)similarity measure for which the problem can be solved

in polynomial time. For example, de¯ning the median partition problem with the

following similarity measure

� 0ðPa;PbÞ ¼
1; Pa ¼ Pb;

0; otherwise:

�

In the above example, the median partition can be obtained in polynomial time

because one of the partitions in P is the solution. Indeed, if all partitions in P are

di®erent, the solution can be found in Oð1Þ, since any partition in P is the solution to

the problem. However, the similarity function � 0 does not have practical relevance,

because it is a very weak similarity measure between partitions. Hence, the following

question comes up. Is there any strongc similarity measure between partitions, so it

allows solving the median partition problem in polynomial time? To the extent of the

authors knowledge, this is an unanswered question. We think that this question has

not been deeply studied and a positive answer may lead to a promising clustering

ensemble technique.

Besides the Mirkin distance, there are a lot of (dis)similarity measures between

partitions that can be used in the de¯nition of the median partition problem. Deep

analyses of the di®erent (dis)similarity measures between partitions can be found in

Refs. 3, 62 and 66. However, these analyses were motivated by an interest in ¯nding

the best external cluster validity index.41 Therefore, the properties of these measures

are not studied from the perspective of how they can be suitable for the median

partition problem.

Among the main (dis)similarity measures between partitions we can ¯nd:

. Counting pairs measures. These measures count the pairs of objects on which two

partitions agree or disagree. Some of them are the Rand index,68 Fowlkes-Mallows

index,28 the Jaccard coe±cient,9 the Mirkin distance63 and some adjusted versions

of these measures.

. Set matching measures. These measures are based on set cardinality comparisons.

Some of them are the Purity and Inverse Purity,102 the F measure82 and Dongen

measure.81

cThe term strong denotes a similarity measure that takes enough information from both partitions to

determine whether they are similar or not.
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. Information Theory based measures. These measures quantify the information

shared between two partitions. Some of them are the Class Entropy,8 Normalized

Mutual Information,75 Utility Function,64 Variation of Information62 and

V-measure.70

. Kernel measures. These measures are de¯ned speci¯cally for the median partition

problem and are proven to be positive semide¯nite kernels.71 Some of them are the

Graph Kernel based measure85 and the Subset Signi¯cance based measure.86

Consensus functions based on the median partition approach (1) have been

theoretically more studied than the ones based on the objects co-occurrence

approach. The median partition approach allows facing the consensus problem in a

more rigorous way. In spite of that, Topchy et al.79 give theoretical arguments about

the validity of both approaches. They showed that the consensus solution converges

to the underlying clustering solution as the number of partitions in the ensemble

increases. However, in both approaches there are problems without de¯nite solution,

e.g. in the object co-occurrence approach generally, the application of a clustering

algorithm as a ¯nal step to ¯nd the consensus is necessary, but the questions are:

Which clustering algorithm should be used? Which are the correct parameters?

In the median partition approach, a (dis)similarity measure between clusterings is

necessary, but which is the correct (dis)similarity measure? Besides, the consensus

partition is usually de¯ned as the optimum of an exponential optimization problem;

however, which is the best heuristic to solve the problem or to come close to the

solution?

A lot of clustering ensemble methods have been proposed in recent years trying to

answer questions like the previous ones. The consensus problem has been faced by

using several mathematical and computational tools. Methods based on Relabeling

and Voting, Co-association Matrix, Graph and Hypergraph partitioning, Mirkin

distance, Information Theory, Finite Mixture Models, Genetic Algorithms, Locally

Adaptive Clustering Algorithms (LAC), Kernel methods, Non-Negative Matrix

Factorization (NMF) and Fuzzy techniques can be found. In Fig. 3, a taxonomy of

the main consensus functions is presented.

In Fig. 3, besides the taxonomy based on the mathematical or computation tool

used in each kind of clustering ensemble technique, a correspondence between each

kind of technique and one of the two consensus function approaches de¯ned above

(object co-occurrence or median partition) is presented. In principle, this corre-

spondence between these two taxonomies of consensus functions does not have to be

unique, e.g. there could be two consensus clustering methods based on genetic

algorithms, one following the co-occurrence approach and the other, the median

partition approach. However, we made explicit this correspondence since it actually

holds in practice. On the other hand, some consensus functions present the

peculiarity that they are de¯ned through the median partition problem, but in

practice, the consensus partition is obtained by means of a mechanism related with

the object co-occurrence approach. These are the cases, for instance, of the Graph
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and Hypergraph based methods (Sec. 2.2.3) and Information Theory based methods

(Sec. 2.2.5). We put these algorithms in the object co-occurrence classi¯cation in

Fig. 3.

In the next sections, we will present an analysis of each kind of clustering

ensemble methods. In this analysis, we will explain the most popular clustering

ensemble techniques. Also, for each kind of method, we will talk about its strength
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Fig. 3. Diagram of the principal consensus functions techniques. Consensus functions based on object
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approach are represented by a rounded rectangle (right).
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and weakness for de¯ning the clustering ensemble problem, as well as their advan-

tages and drawbacks for obtaining the consensus partition.

2.2.1. Relabeling and Voting based methods

The Relabeling and Voting methods are based on solving as ¯rst step the labeling

correspondence problem and after that, in a voting process, the consensus partition is

obtained. The labeling correspondence problem consists of the following: the label

associated to each object in a partition is symbolic; there is no relation between the

set of labels given by a clustering algorithm and the set of labels given by another

one. The label correspondence is one of the main issues that makes unsupervised

combination di±cult. The di®erent clustering ensemble methods based on relabeling

try to solve this problem using di®erent heuristics such as bipartite matching and

cumulative voting. A general formulation for the voting problem as a multi-response

regression problem was recently presented by Ayad and Kamel.6 Among the rela-

beling based methods Plurality Voting (PV),26 Voting-Merging (V-M),18 Voting for

fuzzy clusterings,19 voting Active Clusters (VAC),80 Cumulative Voting (CV)7 and

the methods proposed by Zhou and Tang103 and Gordon and Vichi36 are found.

Dudoit and Fridlyand22 and Fischer and Buhmann26 presented a voting con-

sensus algorithm similar to plurality voting used in supervised classi¯ers ensembles.55

In this method, it is assumed that the number of clusters in each partition is the same

and equal to the ¯nal number of clusters in the consensus partition. The labeling

correspondence problem is solved through a maximum-likelihood problem using the

Hungarian53 method. After that, a plurality voting procedure is applied to obtain the

winner cluster for each object.

In the Voting-Merging18 method, a way of combining clustering using a voting

schedule is proposed. This consists of two main steps: a voting process and the

merging of the votes. In the voting step, it is necessary to solve the label corre-

spondence problem. After that, for each object xi and each cluster Cj, DjðxiÞ is
de¯ned as the number of times that the jth label is associated to xi. At this moment,

a fuzzy partition of the set of objects X is obtained. Then, to each object xi,

the cluster Cg ¼ argmaxCj
fDjðxiÞg is assigned. On the other hand, �ðCq;CjÞ ¼

meanx2Cq
fDjðxÞg is de¯ned as a measure of how much the elements in the qth cluster

belong to the jth cluster. Therefore, �ðCq; CjÞ is a non-symmetric measure of the

Cq;Cj neighborhood relation. It is said that the cluster C is the closest one to Cq if

�ðCq;CÞ ¼ maxj 6¼qf�ðCq;CjÞ2g. All pairs of clusters Cq;Cj such that Cq is the closest

cluster to Cj and Cj is the closest cluster to Cq are merged using this measure. A

chain of clusters ðCq1 ;Cq2 ; . . . ;CqhÞ, in which each cluster Cqi is the closest to its

consecutive Cqiþ1 and the last cluster Cqh is the closest to the ¯rst one in the chain Cq1 ,

is also merged.

The Voting Active Clusters80 method provides an adaptive voting method where

the votes are updated in order to maximize an overall quality measure. This method

allows the combination of clusterings from di®erent locations, i.e. all the data does
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not have to be collected in one central work station. The idea is to make di®erent

clusterings from di®erent portions of the original data in separate processing centers.

Afterwards, the consensus clustering is obtained through a voting mechanism.

If there exists a relation among the labels associated for each clustering algor-

ithm, the voting de¯nition of the clustering ensemble problem would be the most

appropriate. However, the labeling correspondence problem is what makes the

combination of clusterings di±cult. This correspondence problem can only be

solved, with certain accuracy, if all partitions have the same number of clusters. We

consider this to be a strong restriction to the cluster ensemble problem. Then, in

general, they are not recommended when the number of clusters in all partitions in

the ensemble is not the same. Besides, very frequently, they could have high

computational cost since the Hungarian algorithm to solve the label correspondence

problem is Oðk3Þ, where k is the number of clusters in the consensus partition. On

the other hand, these kinds of algorithms are usually easy to understand and

implement.

2.2.2. Co-association matrix based methods

The idea of co-association is used to avoid the label correspondence problem.

Co-association methods (see Ref. 30), map the partitions in the cluster ensemble into

an intermediate representation: the co-association matrix. Each cell in the matrix has

the following value:

CAij ¼
1

m

Xm
t¼1

�ðPtðxiÞ;PtðxjÞÞ ð2Þ

where PtðxiÞ represents the associated label of the object xi in the partition Pt, and

� a; bð Þ is 1, if a ¼ b, and 0 otherwise. Then, the value in each position ði; jÞ of this
matrix is a measure about how many times the objects xi and xj are in the same

cluster for all partitions in P. This matrix can be viewed as a new similarity measure

between the set of objects X. The more objects xi and xj appear in the same clusters,

the more similar they are. Using the co-association matrix CA as the similarity

measure between objects, the consensus partition is obtained by applying a clus-

tering algorithm.

In Ref. 29, a ¯xed threshold equal to 0.5 is used to generate the ¯nal consensus

partition. It is obtained by joining in the same cluster, objects with a co-association

value greater than 0:5.

Fred and Jain30 proposed a modi¯cation where an algorithm is applied to ¯nd a

minimum spanning tree, after obtaining the co-association matrix, i.e. seeing the

co-association matrix as an adjacency matrix of a graph, a tree that contains all

the nodes of the graph and the minimum weights in their edges are searched. Then,

the weak links between nodes are cut using a threshold r. This is equivalent to

cutting the dendrogram produced by the Single Link (SL)47 algorithm using the

threshold r. This threshold is obtained by using a simple but e®ective heuristic called
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highest lifetime criterion. In Ref. 30 the k-cluster lifetime is de¯ned as the range of

threshold values on the dendrogram to obtain k clusters. After computing the life-

time value of each level, the one with the highest value is selected as the ¯nal

partition of the data. Besides, the Complete-Link (CL), Average-Link (AL) and

other hierarchical clustering algorithms can be used as variants of this method.

Li et al.57 introduced a new hierarchical clustering algorithm that is applied to

the co-association matrix to improve the quality of the consensus partition. This

algorithm is based on the development of the concept of normalized edges to measure

similarity between clusters.

In the co-association matrix (2), �ða; bÞ takes only the values 0 or 1. That way, the

new similarity between objects is computed only by taking into account whether the

two objects belong to the same cluster or not. We think that a representation, which

uses additional information to make the similarity measure should be more expres-

sive about the real relationship between the objects.

In this direction, two similarity matrixes: Connected-Triple Based Similarity

(CTS) and SimRank Based Similarity (SRS) are proposed by Iam-on et al.46 The

CTS works on the basis that if two objects share a link with a third object, then this

is indicative of similarity between those two objects. The SRS re°ects the underlying

assumption that neighbors are similar if their neighbors are similar as well. Also,

Vega-Pons and Ruiz-Shulcloper87 presented the Weighted Co-Association Matrix,

which computes the similarity between objects using the size of the cluster, the

number of clusters in each partition and the original similarity values between the

objects. Besides, Wang et al.90 introduced the Probability accumulation matrix,

which is conformed taking into account the size of clusters, as well as the number of

features in the object representation. These matrixes take into account more infor-

mation than the traditional co-association (2) and they can measure the pair-wise

correlation between objects in higher resolution.

All the co-association methods are based on the construction of a new similarity

measure between objects from the clustering ensemble. Also, a clustering algorithm

to obtain the ¯nal partition is necessary. Hence, the consensus clustering will be

conditioned by the way that the similarity is created and the particular algorithm

applied (and its parameters initialization). Besides, this kind of algorithms have a

computational complexity of Oðn2Þ, and cannot be applied to large datasets. How-

ever, they are very easy to implement and understand.

2.2.3. Graph and hypergraph based methods

This kind of clustering ensemble methods transform the combination problem into a

graph or hypergraph partitioning problem. The di®erence among these methods lies

on the way the (hyper)graph is built from the set of clusterings and how the cuts on

the graph are de¯ned in order to obtain the consensus partition.

Strehl and Ghosh75 de¯ned the consensus partition as the partition that most

information shares with all partitions in the cluster ensemble. To measure the
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information shared by two partitions, the Normalized Mutual Information (NMI) is

used based on theMutual Information concept from Information Theory.15 The NMI

is a similarity measure between partitions de¯ned as follows:

Let Pa ¼ fCa
1 ;C

a
2 ; . . . ;C

a
da
g and Pb ¼ fC b

1;C
b
2; . . . ;C

b
db
g be two partitions ofX, da

being the number of clusters in Pa and db the number of clusters in Pb: Let nia be

the number of objects in the ith cluster of the partition Pa, nbj the number of objects

in the jth cluster of the partition Pb and nij the number of objects which are

together in the ith cluster of the partition Pa and in the jth cluster of the partition

Pb. The Normalized Mutual Information between Pa and Pb is expressed in the

following way:

NMIðPa;PbÞ ¼
�2Pda

i¼1
Pdb

j¼1
nij

n logð nij�n
nia�nbj

ÞPda
i¼1 nia logðnia

n Þ þ
Pdb

j¼1 nbj logðnbj

n Þ

It takes 1 as a maximum value and 0 as a minimum.

This way, the consensus partition is de¯ned as:

P � ¼ argmax
P2PX

Xm
j¼1

NMIðP ;PjÞ ð3Þ

where PX is the set of all possible partitions with the set of objects X.

An exhaustive search to solve this problem is computationally intractable. To face

this problem three heuristics based on hypergraph partitioning are proposed by

Strehl and Ghosh,75 CSPA, HGPA and MCLA. The three heuristics start from

representing the clustering ensemble as a hypergraph, where each partition is rep-

resented by an hyperedge.

In the Cluster-based Similarity Partitioning Algorithm (CSPA), from the hyper-

graph, a n� n similarity matrix (the co-association matrix) is constructed. This can

be viewed as the adjacency matrix of a fully connected graph, where the nodes are the

elements of the setX and an edge between two objects has an associated weight equal

to the number of times the objects are in the same cluster. After that, the graph

partitioning algorithm METIS49 is used for obtaining the consensus partition.

The HyperGraphs Partitioning Algorithm (HGPA) partitions the hypergraph

directly, by eliminating the minimal number of hyperedges. It is considered that all

hyperedges have the same weight, and it is searched by cutting the minimum possible

number of hyperedges that partition the hypergraph in k connected components of

approximately the same dimension. For the implementation of the method, the

hypergraphs partitioning package HMETIS48 is used.

In theMeta-CLustering Algorithm (MCLA), ¯rst of all the similarity between two

clusters Ci and Cj is de¯ned in terms of the amount of objects grouped in both, using

the Jaccard index.9 Then, a matrix of similarity between clusters is formed, which

represents the adjacency matrix of the graph built considering the clusters as nodes

and assigning a weight to the edge between two nodes, equal to the similarity between
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the clusters. After that, this graph is partitioned using METIS49 algorithm and the

obtained clusters are called meta-clusters. Finally, to ¯nd the ¯nal partition, the times

each object appears in a meta-cluster is calculated and each object is assigned to the

meta-cluster to which it is assigned more times. This algorithm is quadratic with

respect to the amount of clusters in the set of partitions P, which in most applications

is signi¯cantly smaller than n2.

Another method, the Hybrid Bipartite Graph Formulation (HBGF) was intro-

duced by Fern et al.23 It models the clusters and the objects together in the same

graph. In this method, a bipartite graph is built where there are no edges between

vertexes that are both either instances or clusters. There only exists an edge between

two nodes if one of the nodes represents a cluster and the other node represents an

object that belongs to this cluster. The consensus partition is obtained partitioning

this graph by using the METIS49 algorithm or the Spectral clustering.65

Recently, Abdala et al.1 proposed a graph based clustering ensemble algorithm

based on the random walker algorithm for the combination of image segmenta-

tions.91 First, given a parameter �, a graph that connects each object with its �

nearest neighbors is built. In this graph, a weight is associated to each edge according

to the co-association (2) value between the objects that compose the edge. Then,

some seed regions are automatically generated in the graph and using these seed

regions the random walker algorithm37 is applied to obtain the consensus result.

The graph and hypergraph based methods are among the most popular methods.

They are easy to understand and implement. Moreover, in most cases they have low

computational complexity (less than quadratic in the number of objects), for ex-

ample, HGPA (Oðk � n �mÞ), MCLA (Oðk2 � n �m2Þ) and HBGF (Oðk � n �mÞ),
where n is the number of objects, m the number of partitions and k the number of

clusters in the consensus partition. Only the CSPA method has a computational and

storage complexity of Oðk � n2 �mÞ, which is quadratic in the number of objects. We

put more attention in the complexity respect to the number of objects n, because in

practice, m� n and k almost always takes relatively small values.

We consider that the main weakness of this kind of clustering ensemble methods

is that they are not rigourously well-founded as a solution for the consensus clus-

tering problem, in the sense that most of them are proposed as a solution for the

median partition problem (3) de¯ned with the NMI similarity measure, but in

practice, they are not solving this problem. These methods are more related with

the object co-occurrence approach since in the (hyper)graph construction and in

the partitioning algorithm, the relationship between individual objects are im-

plicitly taken into account. In addition to that, these methods need a (hyper)graph

partitioning algorithm in the ¯nal step, therefore, if we change this algorithm, the

¯nal result could change. Regardless of the fact that METIS and HMETIS are the

most used algorithm for the (hyper)graph partitioning, they are not the only graph

partitioning algorithm and they do not have to achieve the best results in all

situations.
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2.2.4. Mirkin distance based methods

Given two partitions Pa and Pb of the same dataset X, the following four categories

are de¯ned:

. n00: The number of pairs of objects that were clustered in separate clusters in Pa

and also in Pb.

. n01: The number of pairs of objects that were clustered in di®erent clusters in Pa,

but in the same cluster in Pb.

. n10: The number of pairs of objects that were co-clustered in the same cluster in Pa,

but not in Pb.

. n11: The number of pairs of objects that were co-clustered in both partitions.

The symmetric di®erence distance or Mirkin distanceM is de¯ned asMðPa;PbÞ ¼
n01 þ n10, which represents the number of disagreements between the two partitions.

The median partition problem de¯ned with this similarity measure (4) was proven to

be a NP-complete problem.

P � ¼ arg min
P2PX

Xm
j¼1
MðP ;PjÞ ð4Þ

Some methods were proposed to get an exact solution of this problem, e.g. Refs. 39

and 89. However, they can only be applied in small instances of this problem, i.e. with

small numbers of objects and partitions.

Thus, several heuristics have been proposed to face this problem, in some cases

with a known approximation factor.84 In Ref. 25, three heuristics to solve this pro-

blem were introduced.

The ¯rst one, called Best-of-k (BOK), is a very simple heuristic which consists of

selecting the partition P 2 P closest to the solution of the problem (4). In other

words, the output of this heuristic is the partition in the cluster ensemble that

minimizes the distance from it to all the other partitions in the ensemble. For the

Mirkin distance case, this simple solution is proven to be a factor 2-approximation of

the median partition problem.

The second heuristic, Simulated Annealing One-element Move (SAOM), follows

the idea of guessing an initial partition and iteratively changing it by moving one

object from one cluster to another. This way, better solutions could be found. The

initial partition can be randomly selected or, for example, the output of the BOK

algorithm. In the SAOM heuristic the simulated annealing51 meta-heuristic is

applied in order to avoid the convergence to a local optimum. The results of this

algorithm are dependent on the selection of the initial partition and the global

parameter selected for the simulated annealing meta-heuristic.

The third heuristic, Best One-element Move (BOM), is based on the previous idea

of starting with an initial partition and after that generating new partitions by

moving object from one cluster to another. In this case, a greedy process is followed.
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At each step, if a better partition exists, it is taken as the new solution. This

algorithm is much more dependent on the initial partition than the previous one

(SAOM). An improper selection of the initial partition could lead to a fast conver-

gence to a poor quality local optimum.

Gionis et al.32 proposed four new heuristics to solve the problem (4). The ¯rst one

is called Balls algorithm. In this algorithm, a graph is built with the objects, where

the edges are weighted by the distances between pairs of objects. Based on the

triangle inequality of the Mirkin distance, an iterative process is applied, where in

each iteration a new cluster for the consensus partition is obtained. To obtain the

new clusters, for each object x, a set Bx with the objects at a distance of at most 1/2

from x is selected. If the average distance of the nodes in Bx to x is less or equal to a

parameter �, the objects Bx [ fxg are considered a new cluster; otherwise, the object

x forms a singleton cluster.

The second algorithm, Agglomerative algorithm, works like the standard Average-

Link agglomerative clustering algorithm. Starting with any object forming a sin-

gleton cluster, if the average distance of the closest pair of clusters is less than 1/2 the

clusters are merged. When there are not two clusters with an average distance less

than 1/2 the algorithm stops and the current solution is given as the proposed

median partition.

The third algorithm, Furthest algorithm, is a top-down heuristic. Starting with all

the objects in the same single cluster, in each step, the pair of nodes furthest apart are

placed in di®erent clusters and the cost of the new partition is computed. The cost of

a partition is computed as the sum of all distances from it to all partitions in the

cluster ensemble. This procedure is repeated until a worse solution is obtained.

The fourth algorithm, LocalSearch algorithm, is a local search heuristic. This

algorithm starts with an initial partition, which is iteratively changed. In this

algorithm, a particular way of computing the cost of changing an object from one

cluster to another is de¯ned. Thus, the idea of the algorithm is to change the objects

in the clusters and this process is repeated until there is no move that can improve

the cost. This algorithm can be applied as a clustering algorithm or as a post-

processing step to improve the quality of the previous algorithms.

These four heuristics have a computational complexity quadratic in the number of

objects. Then, they are not scalable to large datasets.

Bertolacci and Wirth10 made an examination of some approximation algorithms

for the consensus clustering problem. Besides the algorithms previously presented in

this section, two other algorithms were used: CC-Pivot and CCLP-Pivot. These

algorithms were ¯rst proposed by Alion et al.2

The CC-Pivot is based on the idea of the well-known sorting algorithm Quicksort.

In the CC-Pivot algorithm, pivot objects are repeatedly selected and a partition is

obtained by means of the relation between the objects and each pivot. The pivots are

usually randomly selected, however other heuristics can be used for the selection.83

This method has a computational complexity of Oðk � n �mÞ (k is the number of
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clusters in the ¯nal partition, n the number of objects and m the number of

partitions).

The CCLP-Pivot is a linear programming based version of the CC-Pivot. How-

ever, CCLP-Pivot has a computational complexity of Oðn3Þ, which is extremely high

to consider this algorithm a possible way of facing the consensus clustering problem.

Goder and Filkov34 made an experimental comparison of these previous tech-

niques and came to the conclusion that clustering based heuristics are generally

faster while local search heuristics give generally better results.

In these methods, the consensus partition is obtained by the solution of the

median partition problem when using the Mirkin distance as dissimilarity measure

between partitions (4). The Mirkin distance is the most studied measure for the

median partition problem. However, in practice, it does not have to be the most

appropriate for all situations. Some of the heuristics previously discussed have a high

computational complexity, thus they cannot be applied to large datasets. However,

most of them are easy to understand and program.

2.2.5. Information Theory based methods

Another method to solve the optimization problem (1) was introduced by Topchy

et al.78 The category utility function33 UðPh;PiÞ is de¯ned as a similarity measure

between two partitions Ph ¼ fCh
1 ;C

h
2 ; . . . ;C

h
dh
g and Pi ¼ fC i

1;C
i
2; . . . ;C

i
di
g as

follows:

UðPh;PiÞ ¼
Xdh
r¼1

�ðCh
r Þ

Xdi
j¼1

�ðC i
jjCh

r Þ2 �
Xdi
j¼1

�ðC i
jÞ2 ð5Þ

where �ðCh
r Þ ¼ jC

h
r j
n ; �ðC i

jÞ ¼ jC
i
j j

n and �ðC i
jjCh

r Þ ¼ jC
i
j\C h

r j
jC h

r j .

In this case, the category utility function can be interpreted as the di®erence

between the prediction of the clusters of a partition Pi both with the knowledge of

the partition Ph and without it. This way, the better agreement between the two

partitions, the higher values of the category utility function we shall have.

Hence the consensus partition could be de¯ned by using U as a similarity measure

between partitions:

P � ¼ arg max
P2PX

Xm
i¼1

UðP ;PiÞ

It has been proved64 that this utility function is equivalent to within-cluster variance

minimization, then it can be maximized by applying the k-Means algorithm. Using

a generalized de¯nition of entropy,15 the utility function is transformed into the

normalized mutual information. Finally, this method o®ers the same criterion of

consensus that the normalized mutual information (NMI) and the k-Means algorithm

can be used as a heuristic solution.

This algorithm de¯nes the consensus problem as the search of the median

partition and a heuristic solution is proposed. In this method, the category utility
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function is used as the similarity measure between partitions. However, the heuristic

proposed to obtain the consensus partition uses the k-Means algorithm to determine

the label associated to each object in the ¯nal partition. Thus, this method is actually

more related with the object co-occurrence approach than with the median partition

approach. On the other hand, the ¯nal partition is conditioned by the structure

imposed on the data by the k -Means algorithm, i.e. clusters with hyper-spherical

shape, the number of clusters in the ¯nal partition must be speci¯ed, among others.

Besides, this method requires to be restarted several times to avoid the convergence

to low quality local minima. However, the computational complexity of this method

is very low, Oðk � n �mÞ (k is the number of clusters in the ¯nal partition, n the

number of objects and m the number of partitions), which is generally signi¯cantly

smaller than n2.

2.2.6. Finite mixture models based methods

Topchy et al.76 proposed a new consensus function, where the consensus partition is

obtained as the solution of a maximum likelihood estimation problem. The problem

of maximum likelihood is solved by using the EM61 algorithm.

This consensus approach is based on a ¯nite mixture model for the probability of

assigning labels to the objects in the partitions. The main assumption is that the

labels yi (label assigned to the object xi) are modeled as random variables drawn

from a probability distribution described as a mixture of multivariate component

densities:

�ðyij�Þ ¼
Xk
t¼1

�t�tðyij�tÞ ð6Þ

where each component is parameterized by �t. The k components in the mixture are

identi¯ed with the k clusters of the consensus partition P � ¼ fC1;C2; . . . ;Ckg. The
mixing coe±cients �t correspond to the prior probabilities of the clusters. All the

data Y ¼ fyigni¼1 is assumed to be independent and identically distributed.

This allows representing the logarithmic likelihood function to the parameters

� ¼ f�1; . . . ; �k; �1; . . . ; �kg given the set of data Y as:

logLð�jYÞ ¼ log
Yn
i¼1

�ðyi;�Þ ¼
Xn
i¼1

log
Xk
t¼1

�t�tðyij�tÞ ð7Þ

The searching of the consensus partition is formulated as a problem of maximal

likelihood estimation:

�� ¼ arg max
�
flogLð�jY Þg

The maximal likelihood problem (7) generally cannot be solved in a closed form (just

in terms of functions and elemental operations) when the parameters� are unknown.

However, the likelihood function (6) can be optimized by using the EM algorithm,

assuming the existence of hidden data Z and the likelihood of complete data ðY ;ZÞ.
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To do that, it is started with some arbitrary initial parameters f� 01; . . . ; � 0k;
� 01; . . . ; �

0
kg. After that, an iterative process given by two steps: Expectation (E) and

Maximization (M), is repeated until a convergence criterion is satis¯ed.

The E-step calculates the expected values of the hidden variables and the M-step

maximizes the likelihood calculating a new and better parameter estimation. The

convergence criteria can be based on the increase in the amount of likelihood function

between two consequent M-steps.

The consensus partition is obtained by a simple inspection of the expected values

of the hidden variables E½zit� because E½zit� represents the probability that pattern yi
was generated by the tth mixture component, which represents the tth cluster. When

some convergence criterion is achieved, label yi is assigned to the component that has

the largest value of the hidden variable.

In this method, the data is modeled as random variables and it is assumed that

they are independent and identically distributed, which are three restrictions to the

general problem. Besides, the number of clusters in the consensus partition must be

¯xed because it is necessary to know the number of components in the mixture

model. However, this method has a low computational complexity Oðk � n �mÞ
comparable with the k-means algorithm.

2.2.7. Genetic algorithms based methods

These methods use the search capability of genetic algorithms to obtain the con-

sensus clustering. Generally, the initial population is created with the partitions in

the cluster ensemble and a ¯tness function is applied to determine which chromo-

somes (partitions of the set of object) are closer to the clustering than it is searching

for. After that, crossover and mutation steps are applied to obtain new o®springs and

renovate the population. During this process, if any termination criterion is achieved,

the partition with the highest ¯tness value is selected as the consensus partition.

Among the methods based on genetic algorithms the Heterogeneous Clustering

Ensemble, Refs. 97 and 98 can be found. The initial population in this method is

obtained by using any kind of generation mechanisms. With each pair of partitions

obtained from the objects, an ordered pair is created. The process of reproduction uses

a ¯tness function as a unique way to determine if a pair of partitions (chromosomes)

will survive or not in the next stage. In this algorithm, the ¯tness function is produced

for the comparison of the amount of overlaps between the partitions in each

chromosome.

For a pair of partitions ðP ;P 0Þ, ¯rst, the overlapping of P with respect to P 0 is
computed. For each cluster C in P the cluster of P 0 which most objects shares with C

is searched, and the number of overlapping objects is counted. After that, the

overlapping value of P 0 with respect to P is computed in the same way. Finally, the

¯tness function for this pair is equal to the sum of these overlapping values. This

function gives a representative value to each pair of partitions, and the crossover is

applied to the pair that has the highest value.
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In the crossover process, o®spring are obtained from the selected pair, keeping the

most possible amount of information from the parents in the newly obtained par-

titions. Later, the parent partitions are replaced by their o®spring and another

iteration of the complete algorithm is applied.

Another clustering ensemble method based on genetic algorithms is the method

proposed by Luo et al.,60 where the consensus clustering is found by minimizing an

information theoretical criterion function using a genetic algorithm. This method

(called IT-GA in Fig. 3) uses a metric between clusterings based on the entropy

between partitions. It also uses the Hungarian method to solve the label corre-

spondence problem. Another clustering ensemble method based on genetic algor-

ithms was proposed by Analoui and Sadighian.4 In this paper, the consensus is

proposed through a probabilistic model by using a ¯nite mixture of multinomial

distributions. The ¯nal result is found as a solution to the corresponding maximum

likelihood problem using a genetic algorithm.

The search capabilities of genetic algorithms is used in these methods. It allows

exploring partitions that are not easy to be found by other methods. However, a

drawback of these algorithms is that a solution is better only in comparison to

another; such an algorithm actually has no concept of an optimal solution, or any

way to test whether a solution is optimal or not. Besides, successive runs of this kind

of clustering ensemble algorithms may produce very di®erent results, due to its

extremely heuristic nature.

2.2.8. Locally adaptive clustering algorithm based methods

This kind of consensus function combines partitions obtained by using locally

adaptive clustering algorithms (LAC).21 When a LAC algorithm is applied to a set of

objects X, it gives as an output a partition P ¼ fC1;C2; . . . ;Cqg, which can be also

identi¯ed by two sets fc1; . . . ; cqg and fw1; . . . ;wqg, where ci and wi are the centroid

and the weight associated to the cluster Ci respectively. The LAC algorithms are

designed to work with numerical data, i.e. this method assumes that the object

representation in the dataset is made up of numerical features: X ¼ fx1; . . . ;xng,
with xj 2 R�, j ¼ 1; . . . ;n. Also, ci 2 R� and wi 2 R�, i ¼ 1; . . . ; k. The set of par-

titions P ¼ fP1;P2; . . . ;Pmg is generated by applying LAC algorithms m times with

di®erent parameters initialization.

Domeniconi and Al-Razgan20 proposed two principal consensus functions. The

¯rst one is named Weighty Similarity Partition Algorithm (WSPA). For each object

xi the weighted distance to each cluster Ct for a partition P ¼ fC1;C2; . . . ;Cqg in P is

computed by:

dit ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXl

s¼1
wtsðxis � ctsÞ2

vuut ð8Þ
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where xis represents the sth attribute value of xi, cts is the sth attribute value of the

centroid ct and wts is the weight value assigned to the sth attribute in the cluster Ct.

Let Di ¼ maxtfditg be the maximal distance from xi to all the clusters.

Assuming that the cluster label assigned to each object xi is a random variable from

a distribution, with probabilities f�ðC1jxiÞ; �ðC2jxiÞ; . . . ; �ðCqjxiÞg, it is de¯ned

�ðCtjxiÞ ¼ Di�ditþ1
q�Diþq�

P
t
dit

where the denominator is useful as a normalization factor

which guarantees that
P q

t¼1 �ðCtjxiÞ ¼ 1. That way, the posterior probability vector

associated to each object xi is built:

�i ¼ ð�ðC1jxiÞ; �ðC2jxiÞ; . . . ; �ðCqjxiÞÞT

where T denotes the transpose of the vector.

To calculate the similarity between two objects xi;xj the similarity of the cosine

between the vectors associated to these objects is used, that is:

csðxi;xjÞ ¼
�T
i �j

jj�ijj jj�jjj
Next, all the similarities between objects are combined in amatrix S ofn� n, where

Sij ¼ csðxi;xjÞ. As there are m partitions in P, m similarity matrixes S1;S2; . . . ;Sm

can be made. Let � be the combination of these matrixes:

� ¼ 1

m

Xm
r¼1

Sr

where each entry of this matrix �ij re°ects the similarity average between the objects

xi and xj. As the last step, a graph G ¼ ðV ;EÞ is built where each vertex vi identi¯es

the object xi and the edge eij that connects the vertexes vi and vj has a value equal to

�ij. The METIS algorithm is used to obtain the consensus partition from this graph.

The second consensus function introduced by Domeniconi and Al-Razgan20 is the

Weighty Bipartite Partition Algorithm (WBPA). As its name indicates, it presents a

consensus function based on the partitioning of a bipartite graph. Following the steps

of the WSPA algorithm, for an object xi and a partition Pv, v ¼ 1; . . . ;m, the pos-

terior probabilities vector � v
i is computed. With these vectors, the matrix A is built

as following:

A ¼
ð�1

1ÞT . . . ð�m
1 ÞT

..

. . .
. ..

.

ð�1
nÞT . . . ð�m

n ÞT

0
BB@

1
CCA

where ð� v
i ÞT are row vectors. The dimensionality of A is n� q �m, assuming that

each one of the m applied algorithms produces q clusters. Based on A, a bipartite

graph is de¯ned, which will be partitioned to obtain the consensus partition.

LetG ¼ ðV ;EÞ be the graph with V ¼ V c [ V I , where V c contains q �m vertexes,

where each one represents a cluster and V I contains n vertexes, each one associated
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to an object. The edges will have a weight associated in the following way:

(1) Eði; jÞ ¼ 0. In the case in which both vertexes vi; vj, represent objects or both

represent clusters.

(2) Eði; jÞ ¼ Aði� q �m; jÞ. In the case that vi represents an object and vj rep-

resents a cluster or vice versa.

A partition of the bipartite graph G would group the objects and clusterings simul-

taneously and the consensus partition can be obtained from the objects partitioning.

Also, Domeniconi and Al-Razgan20 proposed a third heuristic called Weighted

Subspace Bipartite Partitioning Algorithm (WSBPA), which is basically the WBPA

heuristic but, it adds a weight vector to each cluster in the output of the algorithm.

This kind of methods imposes a strong restriction to the clustering ensemble

problem meaning that data must be numerical. Then, it cannot be applied on

datasets of categorical or mixed data. Moreover, the number of clusters in the ¯nal

partition must be speci¯ed. As in the (hyper)graph methods (Sec. 2.2.3) a graph

partitioning algorithm at the ¯nal step must be applied. METIS algorithm is used for

this purpose, but in a general way any other graph partitioning algorithm could be

applied. The ¯rst heuristic discussed in this section (WSPA) has a complexity of

Oðn2Þ and leads to severe computational limitations. On the other hand, the other

heuristic (WBPA) is more e±cient with a computational complexity Oðk � n �mÞ.

2.2.9. Non-negative matrix factorization based methods

Li et al.58 introduced a clustering ensemble method based on a non-negative matrix

factorization process. Nonnegative matrix factorization (NMF)13 refers to the pro-

blem of factorizing a given nonnegative data matrix M into two matrix factors, i.e.

M � AB, while requiring A and B to be non-negative.58

In this method, ¯rst of all, the following distance between partitions is used

�ðP ;P 0Þ ¼
Xn
i;j¼1

�ijðP ;P 0Þ ð9Þ

where �ijðP ;P 0Þ ¼ 1 if xi and xj belong to the same cluster in one partition and

belong to di®erent clusters in the other, otherwise �ijðP ;P 0Þ ¼ 0.

Also, the connectivity matrix is de¯ned as:

MijðPvÞ ¼
1; 9C v

t 2 Pv; such that xi 2 Cv
t and xj 2 C v

t ;

0; otherwise:

�
ð10Þ

It is easy to see that �ijðP ;P 0Þ ¼ jMijðP Þ �MijðP 0Þj ¼ ðMijðP Þ �MijðP 0ÞÞ2
The consensus partition P � is de¯ned by the median partition problem using � as

a dissimilarity measure between partitions.

P � ¼ arg min
P2PX

1

m

Xm
v¼1

�ðP ;PvÞ ¼ arg min
P2PX

1

m

Xm
v¼1

Xn
i;j

ðMijðP Þ �MijðPvÞÞ2
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Let Uij ¼MijðP �Þ be the solution to this optimization problem, which is the

connectivity matrix of P �. This optimization problem can take this form:

min
U

Xn
i;j¼1
ð ~Mij � UijÞ2 ¼ min

U
jj ~M � U jj2F

where ~M ij ¼ 1
m

Pm
v¼1 MijðPvÞ and jj � jjF denotes the Frobenius norm.

From this moment, several transformations, relaxing some restrictions of the

original problem, aremade. Finally, the consensus clustering becomes the optimization

problem:

min
Q	0;S	0

jj ~M �QSQT jj2; s:t: QTQ ¼ I ð11Þ

where the matrix solution U is expressed in terms of the two matrixes Q and S.

The optimization problem (11) can be solved using the following multiplicative

update procedure:

Qab  Qab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~MQSÞab

ðQQT ~MQSÞab

s
and Sbc  Sbc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQT ~MQÞbc
ðQTQSQTQÞbc

s

by this iterative process matrixesQ and S can be obtained, and with these two matrixes,

U ¼ QSQT is obtained which is the connectivity matrix of the consensus partition P �.
This method de¯nes the consensus clustering as the median partition problem,

¯xing the distance � (9) as a measure of likeness between partitions. The original

de¯nition of the problem is consecutively relaxed to transform the problem into an

optimization problem that can be solved by an iterative process. However, this

process can only ¯nd local minima, rather than a global minimum of the problem.

Although the multiplicative rules are the most common techniques for Non Negative

Matrix Factorization, there are other approaches such as Fixed Point Alternating

Least Squares algorithms and Quasi-Newton algorithms that can be more e±cient

and achieve better results than the multiplicative techniques.14

2.2.10. Kernel based methods

Vega-Pons et al.86 proposed the Weighted Partition Consensus via Kernels (WPCK)

algorithm. This algorithm incorporates an intermediate step, called Partition Rel-

evance Analysis (see Sec. 2.3), in the traditional methodology of the clustering

ensemble algorithms with the goal of estimating the importance of each partition

before the combination process. In this intermediate step, to each partition Pi is

assigned a weight value !i which represents the relevance of the partition in the

cluster ensemble.

In this method, the following similarity measure between partitions is de¯ned,
~k : PX � PX ! ½0; 1� such that:

~kðPi;PjÞ ¼
kðPi;PjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kðPi;PiÞkðPj;PjÞ
p
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where the function k : PX � PX ! Rþ is given by:

kðPi;PjÞ ¼
X
S
X

�Pi

S �
Pj

S �ðSjPiÞ�ðSjPjÞ

with

�PS ¼
1; if 9C 2 P ; S 
 C

0; otherwise

�

and �ðSjP Þ represents the signi¯cance of the subset S in the partition P , which can

be computed as jSjjCj if 9C 2 P such that S 
 C.

This method de¯nes the consensus partition through the median partition pro-

blem by using ~k as a similarity measure between partitions. Besides, the weights

computed in the Partition Relevance Analysis step are taken into account. This way,

the consensus partition is de¯ned as:

P � ¼ argmax
P2PX

Xm
i¼1

!i � ~kðP ;PiÞ ð12Þ

The function ~k is proven by Vega-Pons et al.86 to be a positive semi-de¯nite

kernel.71 It is known that, if ~k is a kernel function, there exists a map from PX into a

Hilbert Space H, ~� : PX ! H such that ~kðPi;PjÞ ¼ h ~�ðPiÞ; ~�ðPjÞiH (where h�; �iH
denotes the dot product in the Hilbert Space H).

The problem (12) is a very di±cult optimization problem. However, it can

be considered the equivalent problem in the Reproducing Kernel Hilbert Space H
given by:

~�ðP �Þ ¼ arg max
~�ðP Þ2H

Xm
i¼1

!ih ~�ðP Þ; ~�ðPiÞiH

In H this problem can be easily solved. However, to obtain the median partition

solving the preimage problem is necessary, i.e. given the solution  in H, ¯nding the

partition P � 2 PX such that ~�ðP �Þ ¼  . The exact solution P � does not have to

exist, since H is usually larger that PX. That is why an approximate solution P̂ is

de¯ned as:

P̂ ¼ arg min
P2PX

jj ~�ðP Þ �  jj2H ð13Þ

with

jj ~�ðP Þ �  jj 2H ¼ ~kðP ;P Þ � 2
Xm
i¼1

!i
~kðP ;PiÞ þ

Xm
i¼1

Xm
j¼1

!i!j
~kðPi;PjÞ ð14Þ

The preimage problem (13) can be solved by using the well-known meta-heuristic

simulated annealing.51 The computational complexity of the WPCK method can be

estimated inOðn �m � rMaxÞ, where rMax is the maximum number of iterations used

by the simulated annealing as a stop criterion. One of the advantages of this method
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is that it allows computing which partition in the cluster ensemble is closer to the

median partition in a very e±cient way.

Following the same idea of using a kernel similarity measure to de¯ne the median

partition problem another clustering ensemble method called WKF is presented in

Ref. 85. In this case, the similarity measure is based on a graph kernel function. A

generalization of the WKF denoted by GKWF was presented by Vega-Pons and

Ruiz-Shulcloper.87 This generalization extends the ideas of the WKF method to the

categorical and mixed data domains.

This kind of method de¯nes the consensus clustering as the median partition

problem using a kernel function as similarity measure between partitions. An exact

representation in a Hilbert space of the solution is given, however, to obtain the real

P � the preimage problem (13) must be solved. Its trivial solution is intractable

computationally and then, heuristic solutions are proposed. Despite the fact that the

simulated annealing works well for this problem, the use of other meta-heuristics

could be also analyzed in this case. Besides, if the Partition Relevance Analysis is

applied, the quality of the consensus process increases, but the computational cost

also increases.

2.2.11. Fuzzy clustering based methods

So far, we have exposed the main clustering ensemble methods that accept hard

clusterings as input. However, there are some clustering ensemble methods that work

with fuzzy clusterings. There are very popular clustering algorithms like EM and

fuzzy-c -means94 that naturally output fuzzy partitions of data. If the results

obtained by these methods are forcibly hardening i.e. convert fuzzy partition in hard

partitions of the data, valuable information for the combination process could be

lost. Thus, to combine the fuzzy partitions directly may be more appropriate than

hardening ¯rst and after that, using a hard clustering ensemble method.16 The

consensus partition obtained by soft clustering ensemble methods could be hard or

soft. In this section, we only refer to the methods that output hard ¯nal clusterings

since they can be used for the same purpose as all previous clustering ensemble

methods: given a set of objects, obtaining a hard partitioning of them. The fuzzy

clusterings of data are only used in internal steps of the methods.

As in the case of hard clustering ensembles, let X ¼ fx1;x2; . . . ;xng be a set of

objects, P ¼ P1;P2; . . . ;Pmf g is a set of partitions of X, where Pi ¼ fS i
1;S

i
2; . . . ;S

i
di
g

for all i ¼ 1; 2 � � �m. However, in the soft clustering ensemble each S i
j instead of being

a subset of X, can be seen as a function S i
j : X ! ½0; 1�, where S i

jðxrÞ is the degree of
membership of object xr to the jth cluster of the ith partition.

Among these methods, we can mention sCSPA, sMCLA and sHBGPA67 which

are the fuzzy versions of the algorithms CSPA, MCLA and HGBPA respectively (see

Sec. 2.2.3).

sCSPA extends CSPA by changing the way of computing the similarity matrix.

Instead of using the co-association matrix as similarity between objects, the matrix
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SC is computed as follows: First, each object is viewed as a vector in a
Pm

i¼1 di (the
number of clusters in P) dimensional space and the Euclidian distance da;b between

the objects xa and xb is computed as

da;b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
i¼1

Xdi
j¼1
ðS i

jðxaÞ � S i
jðxbÞÞ2

vuut ð15Þ

This can be interpreted as a measure of the di®erence in the membership of the

objects for each cluster. The matrix SC is obtained by converting this distance into a

similarity measure where SCa;b ¼ e�d
2
a;b . After that, the METIS algorithm is used as

in the CSPA method, to obtain the ¯nal partition.

sMCLA extends MCLA by accepting soft clustering as input. The main di®erence

is the use of the similarity matrix SC that uses Euclidian distance (15) as in the

sCSPA method, instead of the similarity between clusters given by the Jaccard index

application. Once this meta-graph of clusters is created, the steps of the algorithm

are as in CSPA.

Another extension of a hard clustering ensemble algorithm is sHBGF, which is the

fuzzy version of HBGF. The HBGF can be trivially adapted to consider soft

ensembles since the graph partitioning algorithm METIS accepts weights on the

edges of the graph to be partitioned. In sHBGF, the weights (!) on the edges are set

as follows:

. !ði; jÞ ¼ 0 if i; j are both clusters or both instances.

. !ði; jÞ ¼ SCi;j otherwise.

Yang et al.96 proposed a modi¯cation of the Evidence Accumulation clustering

ensemble method30 for the case of fuzzy partition. The Fuzzy co-association matrix

based on a fuzzy similarity measure is generated to summarize the ensemble of soft

partitions. Finally, the traditional techniques in the co-association matrix (see

Sec. 2.2.2) based methods can be used to obtain the ¯nal partition of the data.

If in the generation step, fuzzy clustering algorithms are available, the use of a soft

clustering ensemble algorithm allows making a better modeling of the problem at

hand. However, the soft clustering ensemble methods presented in this section

are fuzzy versions of (hyper)graph and co-association based methods, and as a

consequence, they have similar drawbacks to their hard versions.

2.3. Clustering discrimination techniques

In this section, we present some ideas aimed at improving the quality of the com-

bination process. The general methodology in a clustering ensemble algorithm, as we

have previously seen, is made up of two steps: Generation and Consensus. Most of

the clustering ensemble algorithms use in the consensus step all the partitions

obtained in the generation step. Besides, they combine all partitions giving to each

one the same signi¯cance.
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However, in particular situations, all clusterings in the cluster ensemble may not

have the same quality, i.e. the information that each one contributes may not be the

same. Therefore, a simple average of all clusterings does not have to be the best

choice.

In this direction, two di®erent approaches appear. The idea of both approaches is

to inspect the generated partitions and make a decision that assists the combination

process. The ¯rst one consists in selecting a subset of clustering to create an ensemble

committee, which will be combined to obtain the ¯nal solution. The other approach

consists in setting a weight to each partition in order to give a value according to its

signi¯cance in the clustering ensemble.

Hong et al.42 presented a selective clustering ensemble method that works by

evaluating the quality of all obtained clustering results through a resampling tech-

nique and selectively choosing part of promising clustering results. For each clus-

tering a ¯tness value is computed, and partitions are ranked according to this value.

Then, partitions with higher ¯tness values are selected to create the ensemble

committee. Also, Fern and Lin24 introduced an ensemble selection strategy based

on the quality and diversity of partitions in the ensemble. As quality and diversity

are concepts not so clearly de¯ned in unsupervised learning, ¯rst of all, they

explained how to measure the quality and diversity of clustering solutions. After

that, they designed three di®erent selection approaches that jointly consider these

two concepts.

On the other hand, Vega-Pons et al.85,86 introduced an intermediate step called

Partition Relevance Analysis, which assigns a weight to each partition representing

how signi¯cant each partition is for the combination process. In this step, a set of

clustering validity indexes40 is used. Each index is applied to all partitions in the

clustering ensemble. High weights are assigned to partitions with an average beha-

vior with respect to these indexes, and partitions with very di®erent results are

considered noise and small weights are associated to them. Also, Li and Ding59

introduced a way to assign a weight to each clustering before the combination

process. In this case, the goal is to reduce the redundancy in the set of partitions.

Therefore, if two partitions are very similar, the corresponding weights in the ¯nal

solution will tend to be small.

These two techniques do not have to be excluding. A selection based on a pon-

dering process or weighting the partitions already selected could be performed. Any

of these variants could improve the quality of the ¯nal result. However, their use

implies an extra computational cost. Therefore, in a practical problem, the users

should analyze the peculiarities of the problem at hand, and decide whether to use or

not a clustering discrimination technique, according to their requirements.

2.4. Comparison of the methods

An experimental comparison of clustering ensemble algorithms was made by Kunch-

eva et al.54 but only considering co-association and hypergraph based methods.
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Bertolacci andWirth10 and Goder and Filkov34 made experimental comparisons of the

Mirkin based clustering ensemble algorithms (see Sec. 2.2.4). However, these com-

parisons are only based on the experimental results obtained by the application of the

di®erent methods to a ¯xed number of datasets. Besides, these comparisons are only

among a few number of clustering ensemble methods with similar characteristics. In

this sense, we consider that a more complete experimental comparison of clustering

ensemble methods is necessary in order to give a benchmark that could be very useful

for future publications.

In this section, we make a comparison of the consensus function presented in

previous sections taking into account six properties. The idea of this comparison is

not to determine which is the best consensus function. This is an ambiguous term for

this process, which depends on each particular problem, what the users expect in the

results and the way to validate the output of the algorithms. The main goal of this

comparison is to help the selection of an appropriate kind of consensus function to

solve a problem on hand. We explore the general behavior of the di®erent kinds of

consensus functions presented in Sec. 2.2. Thus, we unify all the methods based on

the same kind of consensus function in one row of Table 1. This way, for each kind of

consensus function, we put in Table 1 the general behavior with respect to each one

Table 1. Comparison of consensus functions.

NCP (1) DGM (2) CSO (3) CPC (4) TD (5) CC (6)

Relabeling and
Voting

Fixed
(Cumulative

Voting,7

Variable)

No No Yes Object
co-ocurrence

Heuristic
dependent

Co-association
matrix

Variable No (Voting-k-
means,29

Yes)

No No Object
co-ocurrence

High

Graph and

hypergraph

Variable No No Yes Object

co-ocurrence

Low

(CSPA,75

High)

Mirkin distance Variable No No No Median partition Heuristic

dependent
Information

theory

Variable No No Yes Object

co-ocurrence

Low

Finite mixture

models

Variable No No Yes Object

co-ocurrence

Low

Genetic

algorithms

Variable No No No Median partition Heuristic

dependent

LAC

algorithms

Variable Yes Yes Yes Object

co-ocurrence

Low

NMF methods Variable No No No Median partition Heuristic

dependent

Kernel methods Variable No Yes No Median partition Heuristic

dependent
Fuzzy methods Variable No No Yes Object

co-ocurrence

Low
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of the analyzed properties. We highlight in some cells of Table 1 some exceptions

that we consider important to take into account. We did not put each particular

algorithm in each row of Table 1, because this would lead to a very large table, which

would be harder to understand. Besides, we could corroborate that the general case is

that all methods of a particular kind of consensus function have the same behavior

with respect to each one of the properties analyzed. Exceptions are not very frequent.

We compare the di®erent kinds of consensus functions regarding the following

properties:

(1) Number of Clusters in each Partition (NCP). This property expresses whether

the methods can combine partitions with di®erent number of clusters or not. A

method that can combine partitions with a variable number of clusters can be

used in a larger number of situations. Demanding that partitions have the same

number of clusters is a strong restriction to the clustering ensemble problem.

(2) Dependency on the Generation Mechanism (DGM). This characteristic refers

to the dependence of the consensus function on a speci¯c type of generation

mechanism. A consensus function connected to a ¯xed generation mechanism

could use particular properties of this generation process. However, if the

generation mechanism is not appropriate for a particular problem, the results

will not be the best. Besides, a consensus function that allows any generation

process could be more °exible to di®erent kinds of situations.

(3) Consider the original Set of Objects (CSO). Most consensus functions do not

consider the original objects and only work with the set of partitions. However, the

original objects and their similarity values are additional information that can be

useful in the combination. On the other hand, a consensus function that depends

on the original objects cannot be applied in situations where the objects are not

available in the combination step such as for Knowledge Reuse.75 Therefore, a

consensus function that can make use of the original set of objects if they are

available, but it can also work without the original objects, could be desirable.

(4) The number of clusters in the consensus partition is a parameter of the

consensus function (CPC). A consensus partition capable of determining the

optimum number of cluster in the consensus partition is generally preferable.

However, if in a particular problem the users know how many clusters they

want in the consensus clustering, a consensus function where the number of

clusters must be speci¯ed, should be more appropriate. However, the algor-

ithms that can work without the speci¯cation of the number of cluster can be

easily transformed to make use of the number of clusters as a parameter and to

restrict the solution to this parameter. On the other hand, the methods that

need the speci¯cation of the number of clusters in the consensus partition

usually cannot be easily transformed to work independently from this

parameter. Thus, the consensus function techniques that can work without the

number of clusters speci¯cation are more °exible than the ones which require

the number of cluster speci¯cation.
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(5) Theoretical De¯nition (TD). Consensus functions can be based on two approa-

ches objects co-occurrence or the median partition, (see Sec. 2.2). Consensus

methods that face the problem through the search of the median partitions are

theoretically better de¯ned. However, in practice, they are heuristics to solve a

hard optimization problem, therefore, the theoretical strength of these methods

depend on the particular heuristics.

(6) Computational Complexity (CC). In the case of the computational complexity,

we use three values (low, high and heuristic dependent) because of the following

reasons. In each kind of consensus function there could be di®erent methods

with di®erent computational complexity. For all clustering ensemble methods,

their exact computational complexity is not given in terms of the same vari-

ables. The exact computational complexity of all clustering ensemble methods

is not easy to estimate. This is because some of them are heuristics and it is not

easy to determine how many steps are needed to reach a convergence criterion.

Besides, clustering ensemble algorithms with a quadratic or superior compu-

tational complexity in the number of objects cannot be applied to large data-

sets. Thus, we used the quadratic cost on the number of objects as a threshold

to determine whether an algorithm has high or low computational complexity.

We use the value Heuristic dependent when it is very di±cult to determine the

computational complexity because it depends on the heuristic applied, on the

particular problem and on the convergence criteria used in each case. However,

details about the exact computational complexity of some algorithms can be

found in the sections where they were presented.

3. Applications

The recent progress in clustering ensemble techniques is to a big extent endorsed by

its application to several ¯elds of investigation. There is a large variety of problems in

which the clustering ensemble algorithms can be applied. In principle, as clustering

ensembles try to improve the quality of clustering results, they can be directly used in

almost all cluster analysis problems, e.g. image segmentation, bioinformatics, docu-

ment retrieval and data mining.47

In particular, Gionis et al.32 showed how clustering ensemble algorithms can be

useful for improving the clustering robustness, clustering categorical data and het-

erogeneous data, identifying the correct number of clusters and detecting outliers.

Besides, there are some papers about direct applications of clustering ensembles to

some research ¯elds such as image segmentation: Wattuya et al.,91 Wattuya and

Jiang,92 Forestier et al.,27 Yu et al.,99 Zhang et al.,101 Singh et al.74 and Chang et al.12;

document clustering: Greene and Cunningham,38 Shinnou and Sasaki,73 Gonzalez and

Turno,35 and Xu et al.95; feature extraction: Hong et al.,43 and Hong et al.44; bioin-

formatics, in particular in gene expression analysis: Filkov and Skiena,25 Deodhar and

Ghosh,17 Avogadri and Valentini,5 Yu and Wong,100 Hu et al.,45 and Kashef and
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Kamel50; physics problems: Wouterse and Philipse93; medical applications: Shen

et al.72; among others.

Clustering ensemble methods developed for a speci¯c application purpose should

take into account the peculiarities of the problem at hand. The kind of clustering

ensemble algorithm should be selected according to the speci¯c requirements of each

application. For instance, in image segmentation problems, graph representation of

images are very convenient since neighboring relations among pixels can easily be

taken into account by this structure. Besides, in image segmentation the compu-

tational cost is an important issue because images usually have a large number of

pixels. Hence, graph based clustering ensemble methods could be an appropriate

choice in the segmentation ensemble context.

4. Conclusions

Clustering ensemble has become a leading technique when facing cluster analysis

problems, due to its capacity for improving the results of simple clustering algor-

ithms. The combination process integrates information from all partitions in the

ensemble, where possible errors in simple clustering algorithms could be compen-

sated. That way, the consensus clustering, obtained from a set of clusterings of the

same dataset, represents an appropriate solution.

In this paper, we explore the main clustering ensemble approaches taking into

account their theoretical de¯nition as well as the mathematical and computational

tools used by each method. The bibliographical compilation is presented by using a

uni¯ed notation, through a simple and homogeneous exposition of their funda-

mentals. That way, this survey makes the understanding of the methods developed

until now easier to the reader.

Due to the unsupervised nature of these techniques, it is not adequate to talk

about the best clustering ensemble method. Nevertheless, we can still establish a

comparison among these methods and determine, for speci¯c conditions, which one

may be the most appropriate. We made a critical analysis and comparison of the

methods, taking into account di®erent parameters. The main advantages and dis-

advantages of each method can be helpful to the users to select the convenient

method to solve their particular problem.

From the analysis of the di®erent techniques, we consider that in future works the

following issues should be tackled. It is necessary to create clustering ensemble

methods well-founded from the theoretical point of view. The combination process

should be supported by a theoretical analysis that endorses the use of the method. A

simple average of all partitions in the ensemble does not have to be the best con-

sensus. By making a di®erentiation process among the partitions in the ensemble

(such as in Sec. 2.3) the quality of the consensus clustering could be improved. The

existing clustering ensemble methods are addressed to combine partitions. However,

some clustering algorithms give covers (overlapped clusters) as output, instead of

partitions of the data. Therefore, combination of covers could improve the quality of
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this kind of clustering algorithms. Most of the clustering ensemble algorithms only

use the set of partitions in the combination process. However, the original set of

objects and their similarity values represent extra information that can be useful for

the combination, but generally it is not used. In order to deal with large datasets,

e±cient clustering ensemble algorithms with a computational complexity lower than

Oðn2Þ, are necessary. Finally, considering the number of papers already published on

this topic and the current activity in this investigation ¯eld, we think that a general

experimental evaluation of the existing methods is necessary. Such benchmark could

be very useful for the comparison and evaluation of the existing and future clustering

ensemble methods.
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