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ABSTRACT | Techniques from sparse signal representation are

beginning to see significant impact in computer vision, often on

nontraditional applications where the goal is not just to obtain

a compact high-fidelity representation of the observed signal,

but also to extract semantic information. The choice of

dictionary plays a key role in bridging this gap: unconventional

dictionaries consisting of, or learned from, the training samples

themselves provide the key to obtaining state-of-the-art results

and to attaching semantic meaning to sparse signal represen-

tations. Understanding the good performance of such uncon-

ventional dictionaries in turn demands new algorithmic and

analytical techniques. This review paper highlights a few

representative examples of how the interaction between

sparse signal representation and computer vision can enrich

both fields, and raises a number of open questions for further

study.
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recognition; signal representations

I . INTRODUCTION

Sparse signal representation has proven to be an extremely

powerful tool for acquiring, representing, and compressing

high-dimensional signals. This success is mainly due to the

fact that important classes of signals such as audio and

images have naturally sparse representations with respect

to fixed bases (i.e., Fourier, wavelet), or concatenations of
such bases. Moreover, efficient and provably effective

algorithms based on convex optimization or greedy pursuit

are available for computing such representations with high

fidelity [12].

While these successes in classical signal processing

applications are inspiring, in computer vision, we are

often more interested in the content or semantics of an

image rather than a compact, high-fidelity representation.
One might justifiably wonder, then, whether sparse re-

presentation can be useful at all for vision tasks. The

answer has been largely positive: in the past few years,

variations and extensions of ‘1 minimization have been

applied to many vision tasks, including face recognition

[54], [61], [62], [83], [87], [96], image super-resolution

[92], motion and data segmentation [37], [68], denoising
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and inpainting [15], [56], [60], background modeling
[20], [25], photometric stereo [69], and image classifi-

cation [55], [57], [65], [84], [91], [93]. In almost all of

these applications, using sparsity as a prior leads to state-

of-the-art results.1 Sparsity and the design of appropriate

dictionaries and projections have influenced the devel-

opment of both algorithms and of physical imaging

systems [6]–[8], [76].

The ability of sparse representations to uncover seman-
tic information derives in part from a simple but important

property of the data: although the images (or their features)

are naturally very high dimensional, in many applications,

images belonging to the same class exhibit degenerate
structure. That is, they lie on or near low-dimensional sub-

spaces, submanifolds, or stratifications. If a collection of

representative samples is found for the distribution, we

should expect that a typical sample has a very sparse repre-
sentation with respect to such a (possibly learned) basis.2

Such a sparse representation, if computed correctly, might

naturally encode semantic information about the image.

However, to successfully apply sparse representation to

computer vision tasks, we typically have to address the

additional problem of how to correctly choose the basis for
representing the data. This is different from the conventional

setting in signal processing where a given basis with good
property (such as being sufficiently incoherent) can be

assumed. In computer vision, we often have to learn from

given sample images a task-specific (often overcomplete)

dictionary; or we have to work with one that is not necessarily

incoherent. As a result, we need to extend the existing theory

and algorithms for sparse representation to new scenarios.

This paper will feature a few representative examples

of sparse representation in computer vision. These
examples not only confirm that sparsity is a powerful

prior for visual inference, but also suggest how vision

problems could enrich the theory of sparse representation.

Understanding why these new algorithms work and how

well they work can greatly improve our insights into some

of the most challenging problems in computer vision.

II . ROBUST FACE RECOGNITION:
CONFLUENCE OF PRACTICE
AND THEORY

Automatic face recognition remains one of the most visible

and challenging application domains in vision [95]. In this

section, we will see how sparse representation and sparse

error correction can be used to achieve robust face

recognition in scenarios where well-controlled training
images can be collected. The key idea is a judicious choice

of dictionary: representing the test signal as a sparse linear
combination of the training signals themselves. We will first

see how this approach leads to simple and effective

algorithms for face recognition. In turn, the face recogni-

tion example reveals new theoretical phenomena in sparse

representation that may at first seem surprising.

A. From Theory to Practice: Face Recognition
as Sparse Representation

Our approach to face recognition assumes access to

well-aligned training images of each subject, taken under

varying illumination. For a detailed explanation of how
such images can be obtained, see [83]. We stack the given

Ni training images from the ith class as columns of a matrix

Di¼
: ½di;1; di;2; . . . ; di;Ni

� 2 R
m�Ni , each normalized to have

unit ‘2-norm. One classical observation from computer vision

is that images of the same face under varying illumination lie

near a special low-dimensional subspace [9], [42], often

called a face subspace. So, given a sufficiently expressive

training set Di, a new image of subject i taken under different
illumination and also stacked as a vector x 2 R

m can be

represented as a linear combination of the given training:

x � DiAi for some coefficient vector Ai 2 R
Ni .

The problem becomes more interesting and more

challenging if the identity of the test sample is initially

unknown. We define a new matrix D for the entire training

set as the concatenation of the N ¼
P

i Ni training samples

of all c object classes

D¼: ½D1;D2; . . . ;Dc� ¼ d1;1; d1;2; . . . ; dk;Nk

� �
: (1)

Then, the linear representation of x can be rewritten in

terms of all training samples as

x ¼ D�0 2 R
m (2)

where A0 ¼ ½0; � � � ; 0;AT
i ; 0; . . . ; 0�T 2 R

N is a coefficient

vector whose entries are all zero except for those associated

with the ith class. The special support pattern of this coef-

ficient vector is highly informative for recognition: ideally,

it precisely identifies the subject pictured. However, in
practical face recognition scenarios, the search for such an

informative coefficient vector A0 is often complicated by

the presence of partial corruption or occlusion: gross errors

affect some fraction of the image pixels. In this case, the

above linear model (2) should be modified as

x ¼ x0 þ e0 ¼ D�0 þ e0 (3)

where e0 2 R
m is a vector of errorsVa fraction � of its

entries are nonzero.

1Although the main focus of this paper is computer vision, similarly
unconventional (and noteworthy) applications of sparse representation
arise in audio classification [40], [41], [45], bioinformatics [47], and
human activity classification [90]. In all of these applications, the choice
of dictionary remains critical.

2We use the term ‘‘basis’’ loosely here, since the dictionary can be
overcomplete and its atoms are often not guaranteed to be independent.
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Thus, face recognition in the presence of varying
illumination and occlusion can be treated as the search for

a certain sparse coefficient vector A0, in the presence of a

certain sparse error e0. The number of unknowns in (3)

exceeds the number of observations, and we cannot

directly solve for A0. However, under mild conditions

[32], the desired solution ðA0; e0Þ is not only sparse, but

also it is the sparsest solution to the system of (3)

ðA0; e0Þ ¼ arg min kAk0 þ kek0 subject to

x ¼ D�þ e: (4)

Here, the ‘0-‘‘norm’’ k � k0 counts the number of nonzeros
in a vector. Originally inspired by theoretical results on

equivalence between ‘1- and ‘0-minimizations [17], [28],

the authors of [87] proposed to seek this informative

vector A0 by solving the convex relaxation

min kAk1 þ kek1 subject to x ¼ D�þ e (5)

where kAk1¼
: P

i j�ij. That work demonstrated empiri-

cally an interesting tendency of the ‘1-minimizer: as

visualized in Fig. 1, sparse representation separates the

identity of the face (red coefficients) from the error due

to corruption or occlusion.

Once the ‘1-minimization problem has been solved
(see, e.g., [16], [30], [46], and [80]), classification

(identifying the subject pictured) or validation (determin-

ing if the subject is present in the training database) can

proceed by considering how strongly the recovered

coefficients concentrate on any one subject (see [87] for

details). Here, we present only a few representative

results; a more thorough empirical evaluation can be found

in [87]. Fig. 2(left) compares the recognition rate of this

approach (labeled SRC) with several popular methods on

the Extended Yale B Database [42] under varying levels of
synthetic block occlusion.

Fig. 2 compares the sparsity-based approach outlined

here with several popular methods from the literature3:

the principal component analysis (PCA) approach of [82],

independent component analysis (ICA) architecture I [50],

and local nonnegative matrix factorization (LNMF) [53].

The first method provides a standard baseline of compar-

ison, while the latter two methods are more directly suited
for occlusion, as they produce lower dimensional feature

sets that are spatially localized. Fig. 2(left) also compares

to the nearest subspace method [52], which makes similar

use of linear illumination models, but does not correct

sparse errors.

The ‘1-based approach achieves the highest overall

recognition rate of the methods tested, with almost perfect

recognition up to 30% occlusion and a recognition rate
above 90% with 40% occlusion. Fig. 2(right) shows the

validation performance of the various methods, under 30%

contiguous occlusion, plotted as a receiver operating

characteristic (ROC) curve. At this level of occlusion,

the sparsity-based method is the only one that performs

significantly better than chance. The performance under

random pixel corruption is also strong [see Fig. 1(bottom)],

with recognition rates above 90% even at 70% corruption.

B. From Practice to Theory: Dense Error
Correction by ‘1-Minimization

The empirical results alluded to in the previous section

seem to demand a correspondingly strong theoretical

justification. However, a more thoughtful consideration

reveals that the underdetermined system of linear equation

Fig. 1. Overview of the face recognition approach. The method

represents a test image (left), which is potentially occluded (top)

or corrupted (bottom), as a sparse linear combination of all the

training images (middle) plus sparse errors (right) due to occlusion

or corruption. Red (darker) coefficients correspond to training

images of the correct individual. The algorithm determines the true

identity (indicated with a red box at second row and third column)

from 700 training images of 100 individuals (seven each) in the

standard AR face database.

Fig. 2. Face recognition and validation. (Left) Recognition rate

of the ‘1-based method (labeled SRC), as well as principal

component analysis (PCA) [82], independent component analysis [50],

localized nonnegative matrix factorization (LNMF) [53], and

nearest subspace (NS) [52] on the extended Yale B face database

under varying levels of contiguous occlusion. (Right) Receiver

operating characteristic (ROC) for validation with 30% occlusion.

In both scenarios, the sparse representation-based approach

significantly outperforms the competitors [87].

3See [95] for a more thorough review of the vast literature on face
recognition.
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(3) does not satisfy popular sufficient conditions for

guaranteeing correct sparse recovery by ‘1-minimization.

In face recognition, the columns of D are highly
correlated: they are all images of some face. As m becomes

large (i.e., the resolution of the image becomes high), the

convex hull spanned by all face images of all subjects is only

an extremely tiny portion of the unit sphere S
m�1. For

example, the images in Fig. 1 lie on S
8063. The smallest inner

product with their normalized mean is 0.723; they are

contained within a spherical cap of volume� 1:47� 10�229.

These vectors are tightly bundled together as a ‘‘bouquet,’’
whereas the standard pixel basis�Iwith respect to which we

represent the errors e forms a ‘‘cross’’ in R
m, as illustrated in

Fig. 3. The incoherence [29] and restricted isometry [17]

properties that are so useful in providing performance

guarantees for ‘1-minimization therefore do not hold for the

‘‘cross-and-bouquet’’ matrix ½D I�. Also, the density of the

desired solution is not uniform either: A is usually a very

sparse nonnegative vector,4 but e could be dense (with a
fraction nonzeros close to one) and have arbitrary signs.

Existing results for recovering sparse signals suggest that

‘1-minimization may have difficulty in dealing with such

signals, contrary to its empirical success in face recognition.

In an attempt to better understand the face recognition

example outlined above, we consider the more abstract

problem of recovering such a nonnegative sparse signal

A0 2 R
N from highly corrupted observations x 2 R

m

x ¼ D�0 þ e0

where e0 2 R
m is a vector of errors of arbitrary magnitude.

The model for D 2 R
m�N should capture the idea that it

consists of small deviations about a mean, hence a ‘‘bouquet.’’
We can model this by assuming the columns of D are in-

dependent identically distributed (i.i.d.) samples from a

Gaussian distribution

D ¼ ½d1 . . . dN� 2 R
m�N; di 	i:i:d: N M;

�2

m
Im

� �

kMk2 ¼ 1; kMk1 � C�m�1=2: (6)

Together, the two assumptions on the mean force M to

remain incoherent with the standard basis (or ‘‘cross’’) as

m!1.

We study the behavior of the solution to the

‘1-minimization (5) for this model, in the following asymp-

totic scenario.

Assumption 1 (Weak Proportional Growth): A sequence of
signal-error problems exhibits weak proportional growth

with parameters � > 0; � 2 ð0; 1Þ; C0 > 0; �0 > 0, de-

noted WPG�;�;C0;�0
, if as m!1

N

m
! �;

ke0k0

m
! �; kA0k0 � C0m1��0 : (7)

This should be contrasted with the ‘‘total proportional

growth’’ (TPG) setting of, e.g., [28], in which the number

of nonzero entries in the signal A0 also grows as a fixed
fraction of the dimension. In that setting, one might expect

a sharp phase transition in the combined sparsity of ðA0; e0Þ
that can be recovered by ‘1-minimization. In weak

proportional growth (WPG), on the other hand, we observe

a striking phenomenon not seen in TPG: the correction of

arbitrary fractions of errors. This comes at the expense of the

stronger assumption that kA0k0 is sublinear, an assumption

that is valid in some real applications such as the face
recognition example above.

In the following, we say that the cross-and-bouquet

model is ‘1-recoverable at ðI; J;SÞ if for all A0 
 0 with

support I and e0 with support J and signs S

ðA0; e0Þ ¼ arg min kAk1 þ kek1

subject to D�þ e ¼ D�0 þ e0 (8)

and the minimizer is uniquely defined. From the geometry

of ‘1-minimization, if (8) does not hold for some pair

ðA0; e0Þ, then it does not hold for any ðA; eÞ with the

same signs and support as ðA0; e0Þ [27]. Understanding

‘1-recoverability at each ðI; J;SÞ completely characterizes

which solutions to x ¼ DAþ e can be correctly recovered.

Fig. 3. The ‘‘cross-and-bouquet’’ model. (Left) The bouquet D

and the cross-polytope spanned by the matrix �I. (Right) Tip

of the bouquet magnified; it is modeled as a collection of i.i.d.

Gaussian vectors with small variance �2 and common mean

vector M. The cross-and-bouquet polytope is spanned by vertices

from both the bouquet D and the cross �I [86].

4The nonnegativity of A can be viewed as a consequence of convex
cone models for illumination [42]; the existence of such a solution can be
guaranteed by choosing training samples that span the cone of observable
test illuminations [83].
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In this language, the following characterization of the error
correction capability of ‘1-minimization can be given [86].

Theorem 1 (Error Correction With the Cross-and-Bouquet):
For any � > 0, 9�0ð�Þ > 0 such that if � G �0 and � G 1, in

WPG�;�;C0;�0
with D distributed according to (6), if the

error support J and signs S are chosen uniformly at

random, then as m!1

PD;J;� ‘1�recoverability at ðI; J; �Þ 8 I2 ½N�
k1

� �� �
! 1:

In other words, as long as the bouquet is sufficiently tight,

asymptotically ‘1-minimization recovers any nonnegative

sparse signal from almost any error with support size less
than 100% [86]. This provides some theoretical corrobo-

ration to the strong empirical results observed in the face

recognition example, especially in the presence of random

corruption.

C. Remarks on Sparsity-Based Recognition
The theoretical justifications of this approach discussed

here have inspired further practical work in this direction.

The work reported in [83] addresses issues such as

registration and alignment as well as obtaining sufficient

training data of each subject, and integrates these results

into a practical system for face recognition. However, it is

important to realize that this work aims at scenarios such

as access control where the training data can be controlled:

The face recognition approach described here

assumes that the training images have been carefully

controlled and that the number of samples per class is

sufficiently large. Outside these operating conditions,

and in particular when only a single sample per class is

available, it should not be expected to perform well.

This work does not address the problem of face recognition
from unconstrained training, which arises in applications

in personal photo organization and image search.

Although the cross-and-bouquet model explains much

of the error correction ability of ‘1 minimization, the

striking discriminative power of the sparse representation

(see also Sections III and IV) still lacks rigorous

mathematical justification. Better understanding this

behavior seems to require a better characterization of
the internal structure of the bouquet and its effect on the

‘1-minimizer. To the best of our knowledge, this remains a

wide open topic for future investigation.

III . ‘1-GRAPHS

The previous section showed how for face recognition, a

representation of the test sample in terms of the training

samples themselves yielded useful information for recog-
nition. Whereas before, this representation was motivated

via linear illumination models, we now consider a more

general setting in which an explicit linear model is absent.

Here, the sparse coefficients computed by ‘1-minimization

are used to characterize relationships between the data

samples, in order to accomplish various machine learning

tasks. The key idea is to accomplish this by interpreting the

coefficients as weights in a directed graph, which we term
the ‘1-graph (see also [57] for a graphical model

interpretation of the sparse representation approach for

image classification described in Section IV).

A. Motivations
An informative graph, directed or undirected, is critical

for graph-based machine learning tasks such as data

clustering, subspace learning, and semisupervised learning.
Popular spectral approaches to clustering start with a graph

representing pairwise relationships between the data

samples [74]. Manifold learning algorithms such as ISOMAP

[77], locally linear embedding (LLE) [71], and Laplacian

eigenmaps (LEs) [11] all rely on graphs constructed with

different motivations [89]. Moreover, most popular sub-

space learning algorithms, e.g., PCA [49] and linear

discriminant analysis (LDA) [10], can all be explained within
the graph embedding framework [89]. Also, a number of

semisupervised learning algorithms are driven by the

regularizing graphs constructed over both labeled and

unlabeled data [97].

Most of the works described above rely on one of two

popular approaches to graph construction: the k-nearest-

neighbor method and the "-ball method. The first assigns

edges between each data point and its k-nearest neighbors,
whereas the second assigns edges between each data point

and all samples within its surrounding "-ball. From a

machine learning perspective, the following graph char-

acteristics are desirable.

1) High discriminating power. For data clustering and

label propagation in semisupervised learning, the

data from the same cluster/class are expected to be

assigned large connecting weights. The graphs
constructed in those popular ways, however, often

fail to capture piecewise linear relationships

between data samples in the same class.

2) Sparsity. Recent research on manifold learning [11]

shows that a sparse graph characterizing locality

relations can convey the valuable information for

classification. Also for large scale applications, a

sparse graph is the inevitable choice due to storage
limitations.

3) Adaptive neighborhood. It often happens that the

available data are inadequate and do not evenly

distribute, resulting in different neighborhood

structure for different data points. Both the

k-nearest-neighbor and "-ball methods (in general)

use a fixed global parameter to determine the
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neighborhoods for all the data, and thus do not
handle situations where an adaptive neighborhood

is required.

Enlightened by recent advances in our understanding

of sparse coding by ‘1 optimization [28] and in applications

such as the face recognition example described in the

previous section, we propose to construct the so-called

‘1-graph via sparse data coding, and then harness it for

popular graph-based machine learning tasks. An ‘1 graph
over a data set is derived by representing each datum as a

sparse linear combination of the remaining samples, and

automatically selects the most informative neighbors for

each datum. The sparse representation computed by

‘1-minimization naturally satisfies the properties of sparsity

and adaptivity. Moreover, we will see empirically that

characterizing linear relationships between data samples

via ‘1-minimization can significantly enhance the perfor-
mance of existing graph-based learning algorithms.

B. ‘1-Graph Construction
We represent the sample set as a matrix X ¼ ½x1; x2; . . . ;

xN� 2 R
m�N, where N is the sample number and m is the

feature dimension. We denote the ‘1-graph by G ¼ fV;Wg.
Here, V is the set of N vertices, each of which is identified
with a sample in X, and W ¼ ½wij� 2 R

N�N is the edge

weight matrix. The graph is constructed in an unsupervised

manner, with a goal of automatically determining the

neighborhood structure as well as the corresponding

connection weights for each datum.

Unlike the k-nearest-neighbor and "-ball based graphs

in which the edge weights characterize pairwise relations,

the edge weights of ‘1-graph are determined in a group
manner, and the weights related to a certain vertex

characterize how the rest samples contribute to the sparse

representation of this vertex. The procedure to construct

the ‘1-graph is as follows.

1) Inputs: The sample set X.

2) Sparse coding: For each sample xi, solve the ‘1

norm minimization problem

min
Ai
kAik1 subject to xi ¼ DiAi (9)

where matrix Di ¼ ½x1; . . . ; xi�1; xiþ1; . . . ; xN; I� 2
R

m�ðmþN�1Þ and Ai 2 R
mþN�1.

3) Graph weight setting: Set wij ¼ �i
j (nonnegativ-

ity constraints may be imposed for �i
j in optimi-

zation if for similarity measurement) if i > j, and
Wij ¼ �i

j�1 if i G j.
For data with linear or piecewise-linear class structure,

the sparse representation conveys important discrimina-

tive information, which is automatically encoded in the

‘1-graph. The derived graph is naturally sparseVthe sparse

representation computed by ‘1-minimization never involves

more than m nonzero coefficients, and may be especially

sparse when the data have degenerate or low-dimensional
structure. The number of neighbors selected by ‘1-graph is

adaptive to each data point, and these numbers are

automatically determined by the ‘1 optimization process.

Thus, the ‘1-graph possesses all the three characteristics of a

desired graph for data clustering, subspace learning, and

semisupervised learning [22], [88].

C. ‘1-Graph for Machine Learning Tasks
An informative graph is critical for achieving high

performance with graph-based learning algorithms. Sim-

ilar to conventional graphs constructed by k-nearest-

neighbor or "-ball methods, ‘1-graph can also be integrated

with graph-based algorithms for tasks such as data

clustering, subspace learning, and semisupervised learn-
ing. In the following sections, we show how ‘1-graphs can

be used for each of these purposes.

1) Spectral Clustering With ‘1-Graph: Data clustering is

the partitioning of samples into subsets, such that the data

within each subset are similar to each other. Some of the

most popular algorithms for this task are based on spectral

clustering [74]. Using the ‘1-graph, the algorithm can
automatically derive the similarity matrix from the

calculation of these sparse codings (namely wij ¼ �i
j).

Inheriting the property of greater discriminating power

from ‘1-graph, the spectral clustering based on ‘1-graph

has greater potential to correctly separate the data into

different clusters. Based on the derived ‘1-graph, the

spectral clustering [74] process can be performed in the

same way as for conventional graphs.

2) Subspace Learning With ‘1-Graph: Subspace learning

algorithms search for a projection matrix P 2 R
m�d

(usually d� m) such that distances in the projected space

are as informative as possible for classification. If the

dimension of the projected space is large enough, then

linear relationships between the training samples may be

preserved, or approximately preserved. The pursuit of a
projection matrix that simultaneously respects the sparse

representations of all of the data samples can be

formulated as an optimization problem (closely related

to the problem of metric learning)

min
XN

i¼1

PTxi �
XN

j¼1

wijP
Txj

�����
�����

2

2

subject to PTXXTP ¼ I (10)

and solved via generalized eigenvalue decomposition.

3) Semisupervised Learning With ‘1-Graph: Semisuper-

vised learning has attracted a great deal of recent attention.

The main idea is to improve classifier performance by
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using additional unlabeled training samples to characterize

the intrinsic geometry of the observation space (see, for

example, [66] for the application of sparse models for

semisupervised learning problems). For classification

algorithms that rely on optimal projections or embeddings

of the data, this can be achieved by adding a regulariza-
tion term to the objective function that forces the

embedding to respect the relationships between the

unlabeled data.

In the context of ‘1-graphs, we can modify the classical

LDA criterion to also demand that the computed

projection respects the sparse coefficients computed by

‘1-minimization

min
P

	SwðPÞ þ ð1� 	Þ
PN

i¼1 PTxi �
PN

j¼1 wijP
Txj

��� ���2

2

SbðPÞ

where SwðPÞ and SbðPÞ measure the within-class scatter

and the interclass scatter of the labeled data, respectively,

and 	 2 ð0; 1Þ is a coefficient that balances the supervised

term and the ‘1-graph regularization term (see also [70]).

D. Experimental Results
In this section, we systematically evaluate the effec-

tiveness of the ‘1-graph in the machine learning scenarios

outlined above. The USPS handwritten digit database [48]

(200 samples are selected for each class), forest covertype

database [1] (100 samples are selected for each class), and
ETH-80 object recognition database [2] are used for the

experiments. Note that all the results reported here are

from the best tuning of all possible algorithmic param-

eters, and the results on the first two databases are the

averages of ten runs while the results on ETH-80 are from

one run.

Table 1 compares the accuracy of spectral clustering

based on the ‘1-graph with spectral algorithms based on a
number of alternative graph constructions, as well as the

simple baseline of K-means. The clustering results from

‘1-graph-based spectral clustering algorithm are consis-

tently much better than the other algorithms tested.

Our next experiment concerns data classification based

on low-dimensional projections. Table 2 compares the

classification accuracy of the ‘1-graph-based subspace

learning algorithm with several more conventional
subspace learning algorithms. The following observations

emerge: 1) the ‘1-graph-based subspace learning algorithm

is superior to all the other evaluated unsupervised

subspace learning algorithms, and 2) ‘1-graph-based

subspace learning algorithm generally performs a little

worse than the supervised algorithm Fisherfaces, but on the

forest covertype database, ‘1-graph-based subspace learn-

ing algorithm is better than Fisherfaces. Note that all the
algorithms are trained on all the data available, and the

results are based on nearest neighbor classifier; for all

experiments, ten samples for each class are randomly

selected as gallery set and the remaining ones are used for

testing.

Finally, we evaluate the effectiveness of the ‘1-graph in

semisupervised learning scenarios. Table 3 compares

results with the ‘1-graph to several alternative graph
constructions. We make two observations: 1) the ‘1-graph-

based semisupervised learning algorithm generally

achieves the lowest error rates compared to semisuper-

vised learning based on more conventional graphs, and

2) semisupervised learning based on the ‘1-graph and the

graph used in LE algorithm can generally bring accuracy

improvements compared to the counterpart without harnes-

sing extra information from unlabeled data. Note that all the
semisupervised algorithms are based on the supervised

algorithm marginal Fisher analysis (MFA) [89].

E. Remarks on ‘1-Graphs
Although in this section we have illustrated with a few

generic examples the potential of ‘1-graphs for some

general problems in machine learning, the idea of using

sparse coefficients computed by ‘1-minimization for

clustering has already found good success in the classical

vision problem of segmenting multiple motions in a video,

where low-dimensional self-expressive representations can
be motivated by linear camera models. In that domain,

Table 1 Clustering Accuracies (Normalized Mutual Information)

for Spectral Clustering Algorithms Based on ‘1-Graph, Gaussian-Kernel

Graph (G-g), LE-Graph (LE-g), and LLE-Graph (LLE-g), as Well as

PCA+K-Means (PCA+Km)

Table 2 Classification Error Rates (In Percent) for Different Subspace

Learning Algorithms. LPP and NPE Are the Linear Extensions

of LE and LLE, Respectively

Table 3 Classification Error Rates (In Percent) for Semisupervised

Algorithms ‘1-Graph (‘1-g), LE-Graph (LE-g), and LLE-Graph (LLE-g),

Supervised (MFA), and Unsupervised Learning (PCA) Algorithms
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algorithms combining sparse representation and spectral
clustering also achieve state-of-the-art results on extensive

public data sets [37], [68]. Despite apparent empirical

successes, precisely characterizing the conditions under

which ‘1-graphs can better capture certain geometric or

statistic relationships among data remains an open problem.

We expect many interesting and important mathematical

problems may arise from this rich research field. The next

section further investigates the use of sparse representations
for image classification, including exploiting the sparse

coefficients with respect to learned dictionaries.

IV. DICTIONARY LEARNING
FOR IMAGE ANALYSIS

The previous sections examined applications in vision and

machine learning in which a sparse representation in an

overcomplete dictionary consisting of the samples them-

selves yielded semantic information. This is an extremely

useful idea for clustering and classification, especially for
problems such as face recognition and motion segmentation

where the data have linear or piecewise linear structure.

However, for applications such as inpainting or denoising,

the identity of the given training samples is less impor-

tantVthey only serve as a means to an end. Moreover, in

applications such as general image classification, it is less

clear that images in one class should follow a single linear

model. In such applications, it may be possible to learn more
relevant dictionaries by optimizing a task-specific objective

function. Such dictionaries have the added advantage of

often being much more compact than the original training

set, allowing more efficient online processing. This section

provides an overview of approaches to learning such

dictionaries, as well as their many applications in computer

vision and image processing.

A. Motivations
As detailed in the previous sections, sparse modeling

calls for constructing efficient representations of data as a

(often linear) combination of a few typical patterns
(atoms) learned from the data itself. Significant contribu-

tions to the theory and practice of learning such collections

of atoms (usually called dictionaries or codebooks), e.g.,

[4], [38], and [63], and of representing the actual data in

terms of them, e.g., [21], [24], and [34], have been

developed in recent years, leading to state-of-the-art

results in many signal and image processing tasks [13],

[36], [51], [57], [60], [66]. We refer the reader to [12] for a
recent review on the subject.

The actual dictionary plays a critical role, and it has

been shown again and again that learned dictionaries

significantly outperform off-the-shelf ones such as wave-

lets. Current techniques for obtaining such dictionaries

mostly involve their optimization in terms of the task to be

performed, e.g., representation [38], denoising [4], [60],

and classification [57]. Theoretical results addressing the
stability and consistency of the sparse solutions (active set
of selected atoms), as well as the efficiency of the coding

algorithms, are related to intrinsic properties of the

dictionary such as the mutual coherence, the cumulative

coherence, and the Gram matrix norm of the dictionary

[32], [35], [44], [72], [81]. Dictionaries can be learned by

locally optimizing these and related objectives [33], [67].

In this section, we present basic concepts associated with
dictionary learning, and provide illustrative examples of

algorithm performance.

B. Sparse Modeling for Image Reconstruction
Let X 2 R

m�N be a set of N column data vectors
xj 2 R

m (e.g., image patches), and D 2 R
m�K be a

dictionary of K atoms represented as columns dk 2 R
m.

Each data vector xj will have a corresponding vector of

reconstruction coefficients Aj 2 R
K , which we will treat as

columns of a matrix

A ¼ ½A1; . . . ;AN� 2 R
K�N:

The goal of sparse modeling is to design a dictionary D such
that X ’ DA with kAjk0

sufficiently small (usually below

some threshold) for all or most data samples xj. For a fixed

D, the computation of A is called sparse coding.

We begin our discussion with the standard ‘0 or ‘1

penalty modeling problem

ðA�;D�Þ ¼ arg min
A;D
kX � DAk2

F þ 
kAkp (11)

where k � kF denotes Frobenius norm and p ¼ 0; 1. The

cost function to be minimized in (11) consists of a

quadratic fitting term and an ‘0 or ‘1 regularization term for

each column of A, the balance of the two being defined by

the penalty parameter 
 (this parameter has been studied in
[39], [43], [67], [79], and [98]). The ‘1-norm can be used

as an approximation to ‘0, making the problem convex in A
while still encouraging sparse solutions [78]. While for

reconstruction we found that the ‘0 penalty often produces

better results, ‘1 leads to more stable active sets and is

preferred for the classification tasks introduced in the next

section. In addition, these costs can be replaced by a

(nonconvex) Lorentzian penalty function, motivated
either by further approximating the ‘0 by ‘1 [19], or by

considering a mixture of Laplacians prior for the coeffi-

cients in A and exploiting MDL concepts [67], instead of

the more classical Laplacian prior.5

5The expression (11) can be derived from a MAP estimation with a
Laplacian prior for the coefficients in A and a Gaussian prior for the sparse
representation error.
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Since (11) is not simultaneously convex in fA;Dg,
coordinate-descent-type optimization techniques have been

proposed [4], [38]. These approaches have been extended

for multiscale dictionaries and color images in [60], leading

to state-of-the-art results. See Fig. 4 for an example of color

image denosing with this approach, and [58] and [60] for

numerous additional examples, comparisons, and applica-

tions in image demosaicing, image inpainting, and image

denoising. An example of a learned dictionary is shown in
Fig. 4 as well ðK ¼ 256Þ. It is important to note that for

image denoising, overcomplete dictionaries are used K > m,

and the patch sizes vary from 7 � 7, m ¼ 49, to 20 � 20,

m ¼ 400 (in the multiscale case), with a sparsity of about

one tenth of the signal dimension m.

State-of-the-art results obtained in [60] are ‘‘shared’’ with

those in [23], which extends the nonlocal means approach

developed in [5] and [14]. Interestingly, the two frameworks
are quite related, since they both use patches as building

blocks (in [60], the sparse coding is applied to all overlapping

image patches), and while a dictionary is learned in [60] from

a large data set, the patches of the processed image itself are

the ‘‘dictionary’’ in nonlocal means. The sparsity constraint in

[60] is replaced by a proximity constraint and other

processing steps in [14] and [23]. The exact relationship

and the combination of nonlocal means with sparsity
modeling has been recently exploited by Mairal et al. [55]

to further improve on these results. They also developed a

very fast online dictionary learning approach.

C. Sparse Modeling for Image Classification
While image representation and reconstruction has been

the most popular goal of sparse modeling and dictionary

learning, other important image science applications are

starting to be addressed by this framework, in particular,
classification and detection. In [64] and [66], the authors

use the reconstruction/generative formulation (11), exploit-

ing the quality of the representation and/or the coefficients

A for the classification tasks. This generative only formula-

tion can be augmented by discriminative terms [55], [57],

[59], [70], [75] where an additional term is added in (11) to

encourage the learning of dictionaries that are most relevant

to the task at hand. The dictionary learning then becomes
task dependent and (semi)supervised. In the case of [70], for

example, a Fisher-discriminant-type term is added in order

to encourage signals (images) from different classes to pick

different atoms from the learned dictionary. In [55],

multiple dictionaries are learned, one per class, so that

each class’s dictionary provides a good reconstruction for its

corresponding class and a poor one for the other classes

(simultaneous positive and negative learning). This idea was
then applied in [59] for learning to detect edges as part of an

image classification system. These frameworks have been

extended in [57], where a graphical model interpretation and

connections with kernel methods are presented as well for

the novel sparse model introduced there. Of course, adding

such new terms makes the actual optimization even more

challenging, and the reader is referred to those papers for

details.
This framework of adapting the dictionary to the task,

combining generative with discriminative terms for the

case of classification, has been shown to outperform the

generic dictionary learning algorithms, achieving state-

of-the-art results for a number of standard data sets. An

example from [55] of the detection of patches correspond-

ing to bikes from the popular Gratz data set is shown in

Fig. 5. Image classification via sparse modeling. Two classes have been

considered, ‘‘bikes’’ and ‘‘background,’’ and the dictionaries where

trained in a semisupervised fashion.

Fig. 4. Image denoising via sparse modeling and dictionary

learned from a standard set of color images.
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Fig. 5. The reader is referred to [55], [57], [59], and [70] for
additional examples and comparisons with the literature.

D. Learning to Sense
As we have seen, learning overcomplete dictionaries

that facilitate a sparse representation of the data as a liner

combination of a few atoms from such dictionary leads to

state-of-the-art results in image and video restoration and

classification. The emerging area of compressed sensing
(CS) (see [3], [18], [31] and references therein) has shown

that sparse signals can be recovered from far fewer samples

than required by the classical Shannon–Nyquist theorem.

The samples used in CS correspond to linear projections

obtained by a sensing projection matrix. It has been shown

that, for example, a nonadaptive random sampling matrix

satisfies the fundamental theoretical requirements of CS,

enjoying the additional benefit of universality. A projec-
tion sensing matrix that is optimally designed for a certain

class of signals can further improve the reconstruction

accuracy or further reduce the necessary number of samples.

In [33], the authors extended the formulation in (11) to

design a framework for the joint design and optimization,

from a set of training images, of the nonparametric

dictionary and the sensing matrix �

ðA�;D�;��Þ ¼ arg min
A;D;�

kX � DAk2
F þ 
1kY � �DAk2

F

þ 
2 ð�DÞTð�DÞ � I
�� ��2

F
þ
3kAkp:

In this formulation, we include the sensing matrix � in

the optimization, the sensed signal Y obtained from the
data X via Y ¼ �X, and the critical term that encourages

orthogonality of the components of the effective dictio-

nary �D, as suggested by the critical restricted isometry

property in CS (see [33] for details on the optimization of

this functional). This joint optimization outperforms both

the use of random sensing matrices and those matrices

that are optimized independently of the learning of the

dictionary (Fig. 6). Particular cases of the proposed
framework include the optimization of the sensing matrix

for a given dictionary as well as the optimization of the

dictionary for a predefined sensing environment (see also

[35], [73], and [85]).

E. Remarks on Dictionary Learning
In this section, we briefly discussed the topic of dic-

tionary learning. We illustrated with a number of examples
the importance of learning the dictionary for the task as

well as the processing and acquisition pipeline. Sparse

modeling, and in particular the (semi)supervised case, can

be considered as a nonlinear extension of metric learning

(see [94] for bibliography on the subject and [75] for details

on the connections between sparse modeling and metric

learning). Such interesting connection brings yet another

exciting aspect into the ongoing sparse modeling develop-

ments. The connection with (regression) approaches based

on Dirichlet priors, e.g., [26] and references therein, is yet
another interesting area for future research.

V. FINAL REMARKS

The examples considered in this paper illustrate several

important aspects in the application of sparse representa-

tion to problems in computer vision. First, sparsity provides
a powerful prior for inference with high-dimensional visual

data that have intricate low-dimensional structures.

Methods like ‘1-minimization offer computational tools

to extract such structures and hence help harness the

semantics of the data. As we have seen in the few

highlighted examples, if properly applied, algorithms based

on sparse representation can often achieve state-of-the-art

performance. Second, the key to realizing this power is
choosing the dictionary in such a way that sparse

representations with respect to the dictionary correctly

reveal the semantics of the data. This can be done

implicitly, by building the dictionary from data with linear

or locally linear structure, or explicitly, by optimizing

various measures of how informative the dictionary is.

Finally, rich data and problems in computer vision provide

new examples for the theory of sparse representation, in
some cases demanding new mathematical analysis and

justification. Understanding the performance of the

resulting algorithms can greatly enrich our understanding

of both sparse representation and computer vision. h
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